
  

Teller   
Security   Assessment   
December   1,   2020   

  

  
  
  
  
  
  
  
  
  
  

Prepared   For:     
Ryan   Berkun    |     Teller   Finance     
ryan@teller.finance   

  
Prepared   By:     
Alex   Useche    |     Trail   of   Bits   
alex.useche@trailfobits.com     

  
Will   Song    |     Trail   of   Bits   
will.song@trailofbits.com   

  
Kristin   Mayo    |     Trail   of   Bits   
kristin.mayo@trailofbits.com      

  

mailto:alex.useche@trailfobits.com
mailto:will.song@trailofbits.com
mailto:kristin.mayo@trailofbits.com


  
Executive   Summary   

Project   Dashboard   

Engagement   Goals   

Coverage   

Recommendations   Summary   
Short   term   
Long   term   

Findings   Summary   
1.   Outdated   and   vulnerable   dependencies   
2.   Overly   permissive   cross-origin   resource   sharing   (CORS)   settings   
3.   Consider   using   Vault   
4.   Consider   using   EdDSA   signatures   
5.   Verbose   errors   
6.   Insufficient   logging   
7.   Insufficient   user   input   validation   
8.   Unbound   retries   could   lead   to   denial   of   service   
9.   Insecure   function   used   to   generate   signer   nonce   
10.   Insufficient   testing   coverage   

A.   Vulnerability   Classifications   

B.   Code   Quality   Recommendations   

C.   Vulnerable   Dependencies   
    

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   1  



Executive   Summary   
Teller   engaged   Trail   of   Bits   September   28–October   6   and   November   23-25,   2020,   to   review   
the   security   of   the   off-chain   components   of   The   Teller   Protocol.   We   conducted   this   
assessment   over   four   person-weeks   with   two   engineers   working   from   the   commits   shown   
in   the    Coverage    section   of   this   document.  

  
During   the   first   week   of   the   assessment   we   performed   manual   and   automated   review   of   
provided   documentation   and   code.   The   initial   focus   was   to   identify   components   of   the   
Teller   protocol   that   are   directly   reachable   by   users.   We   also   conducted   dynamic   tests   by   
running   the   above   code   bases   locally   whenever   possible.   The   second   week   was   focused   on   
testing   input   and   error   handling   issues.   We   prioritized   the   validator   code   base,   as   it   
contains   JSON-RPC   endpoints   available   to   users   for   issuing   and   requested   loans.     

  
Our   review   resulted   in   10   findings   ranging   from   medium   to   informational   severity.   The   
medium-severity   issues   included   overly   permissive   cross-origin   resource   sharing   (CORS)   
settings   ( TOB-TEL-002 ),   use   of   environment   variables   for   storing   RSA   keys   ( TOB-TEL-003 ),   
insufficient   logging   ( TOB-TEL-006 ),   and   unbound   function   recursions   ( TOB-TEL-008 ).     

  
Additionally,   verbose   errors   were   returned   by   the   validator   application   ( TOB-TEL-005 ).   
Low-severity   issues   include   Insufficient   testing   coverage   ( TOB-TEL-010 ),   and   an   insecure   
function   used   to   generate   signer   nonce   values   ( TOB-TEL-009 ).   Two   informational   
issues—insufficient   user   input   validation   ( TOB-TEL-007 )   and   the   use   of   RSA   signatures   
( TOB-TEL-004 )—were   also   discovered.   

  
Additional   notes   on   code   quality   and   static   tooling   findings   appear   in    Appendix   B .     

  
While   no   high-risk   findings   were   discovered,   the   Teller   protocol   is   still   being   actively   
developed.   New   vulnerabilities   may   surface   as   the   protocol   grows,   so   the   biggest   areas   of   
improvement   concern   maturity   in   terms   of   security   controls   around   input   validation,   
logging   and   monitoring,   and   testing   for   invalid   and   malicious   input.   As   the   codebase   
matures,   it   will   be   important   to   focus   on   these   areas   to   minimize   the   possibility   of   
introducing   new   vulnerabilities   that   could   be   exploited   by   attackers.     

  
We   recommend   centralizing   logging,   monitoring,   and   error   handling.   Moreover,   we   suggest   
a   security-in-depth   approach   to   input   validation,   configuration   of   services,   and   use   of   
cryptography.   

  
  

    

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   2  



Project   Dashboard   
Application   Summary   

  
Engagement   Summary   

  
Vulnerability   Summary     

  
Category   Breakdown   

    

  

  

Name    Teller   

Version    See   Coverage   

Type    TypeScript   

Platforms    Web   

Dates    September   28–October   6,   2020   
November   23–November   25,   2020   

Method    Whitebox   

Consultants   Engaged    2   

Level   of   Effort    4   person-weeks   

Total   Medium-Severity   Issues    4    ◼◼◼◼   

Total   Low-Severity   Issues    4    ◼◼◼◼   

Total   Informational-Severity   Issues    2    ◼◼   

Total   10        

Patching    1    ◼   

Access   Controls    1    ◼   

Cryptography    3    ◼◼◼   

Error   Reporting    2    ◼◼   

Auditing   and   Logging    1    ◼   

Data   Validation    1    ◼   

Denial   of   Service    1    ◼   

Total   10      

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   3  



Engagement   Goals   
The   engagement   was   scoped   to   provide   a   security   assessment   of   the   off-chain   components   
of   the   Teller   Protocol,   including   the    validator ,    contract-event-istener ,    data-service ,   
and    subgraph    repositories.   

  
Specifically,   we   sought   to   answer   the   following   questions:   

  
● Are   the   components   that   make   up   the   overall   architecture   prone   to   generic   data   

validation   errors   that   may   lead   to   injection   vulnerabilities?   
● Do   any   of   components   leak   sensitive   information   through   errors   or   server   

responses   to   clients?   
● Do   the   components   handle   sensitive   data   in   a   safe   and   cryptographically   secure   

manner?   
● Can   attackers   influence   the   way   interest   values   are   calculated?   
● Is   it   possible   for   an   attacker   to   reduce   the   system’s   availability?   
● Can   an   attacker   perform   unauthorized   operations?   

Coverage   
This   section   highlights   some   of   the   analysis   coverage   we   achieved   based   on   our   high-level   
engagement   goals.     

  
The   engagement   was   scoped   to   provide   a   security   assessment   of   the   following   component   
that   make   up   the   Teller   solution:   

  
● https://github.com/teller-protocol/validator :    c4cf8ff .   
● https://github.com/teller-protocol/contract-event-listener :    3124bd0.   
● https://github.com/teller-protocol/data-service :    616bc14 .   
● https://github.com/teller-protocol/subgraph :    1caa05d .   

  
Note   that   the   commit   shown   for   the   validator   project   corresponds   to   the   code   pulled   on   
November   23,   2020,   as   the   validor   project   was   actively   developed   during   the   first   week   and   
half   of   the   audit.  

  
The   primary   method   used   to   review   the    contract-event-listener ,    data-service ,   and   
subgraph    repos   was   static   code   analysis.   We   reviewed   data   validation   logic,   as   well   as   error   
handling,   logging   and   monitoring,   and   cryptographic   controls.   We   also   leveraged   static   
analysis   tools   to   aid   our   process.   

  

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   4  

https://github.com/teller-protocol/validator
https://github.com/teller-protocol/contract-event-listener
https://github.com/teller-protocol/data-service
https://github.com/teller-protocol/subgraph


After   mapping   out   the   edges   of   the   protocol   most   likely   to   be   attacked,   we   focused   on   the   
methods   exposed   by   the    validator    project.   Teller   also   requested   that   we   focus   on   those   
two   methods   for   the   last   week   of   the   audit.   In   addition   to   static   code   analysis,   we   
conducted   dynamic   tests   by   running   the   validator   project   locally.   We   fuzzed   the   
arrowheadCRA    and    accruedInterest    methods   dynamically   to   observe   how   the   application   
behaved   in   response   to   invalid   and   malicious   input.   This   also   allowed   us   to   test   for   
potential   race   condition   issues   and   rate   limiting   issues   that   could   cause   denial-of-service   
conditions.     

    

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   5  



Recommendations   Summary   
This   section   aggregates   all   the   recommendations   made   during   the   engagement.   Short-term   
recommendations   address   the   immediate   causes   of   issues.   Long-term   recommendations   
pertain   to   the   development   process   and   long-term   design   goals.   

Short   term   
❑   Ensure   dependencies   are   up   to   date.    Several   node   modules   have   been   reported   and   
documented   as   malicious.   Keep   modules   up   to   date   and   verify   their   integrity   after   
installation.    TOB-TEL-001   

  
❑   Create   a   whitelist   of   endpoints   from   which   requests   are   expected .   This   list   can   be   
stored   in   configuration   files,   and   can   include    localhost    for   development.   Then,   when   a   
request   is   received,   validate   the   origin   of   the   request   with   the   whitelist,   and   set   the   
Access-Control-Allow-Origin    header   accordingly.    TOB-TEL-002   

  
❑   Consider   letting   the   user   authenticate   the   private   key   manually.     TOB-TEL-003   

  
❑   Switch    "rsa"    to    "ed25519"    when   generating   key   pairs.     TOB-TEL-004   

  
❑   Make   sure   that   JSON   parsing   errors   are   caught.     TOB-TEL-005   

  
❑   Establish   alerts   on   the   aggregated   application   logs.    Log   exceptions,   particularly   those   
that   could   result   from   users   submitting   malicious   input.    TOB-TEL-006   

  
❑   Validate   all   user   requests   against   malicious   input.     TOB-TEL-007   

  
❑   Establish   a   maximum   number   of   retries.    Check   against   that   value   whenever   the  
function   in   question   gets   called,   and   return   an   error   after   that   number   is   reached.   
TOB-TEL-008   

  
❑   Replace   the   use   of    math.random    with   a   CSPRNG.     TOB-TEL-009   

  
❑   Add   thorough   unit   and   integration   tests   for   the   codebase   using   a   development   
framework   to   facilitate   more   complicated   testing   scenarios.     TOB-TEL-010   

  

Long   term   
❑   Track   and   audit   dependencies   on   a   regular   basis.    It’s   not   uncommon   for   
dependencies   to   be   added   during   development   but   not   removed   when   no   longer   needed.   

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   6  



Consider   integrating   automated   dependency   auditing   in   the   development   workflow.   If   
dependencies   cannot   be   updated   when   a   vulnerability   is   disclosed,   ensure   the   Teller   
codebase   does   not   use,   and   is   not   affected   by,   the   vulnerable   functionality   of   the   
dependency.    TOB-TEL-001   

  
❑   Use   Hashicorp   Vault   and   one   of   its    Node.js    clients.     TOB-TEL-003   

  
❑   Add   unit   tests   that   check   for   different   forms   of   invalid   input,   and   consider   fuzzing   
the   application   to   determine   whether   additional   errors   result   in   verbose   errors   
returned   to   users.     TOB-TEL-005   

  
❑   Create   a   centralized   logging   strategy   that   aggregates   and   centralizes   application   
logs.    Ideally,   logs   could   be   submitted   to   cloud   solutions   such   as   Graphana   and   
ElasticSearch.   Additionally,   establish   alerts   on   abnormal   system   and   application   behaviors.   
This   should   include   a   baseline   of   operation,   and   alert   the   core   response   team   if   those   
values   exceed   their   normal   range.    TOB-TEL-006   

  
❑   Devise   a   centralized   strategy   for   validation   of   common   variables   submitted   by   
users,   such   as   wallet   addresses   and   tokens.     TOB-TEL-007   

  
❑   Whenever   generating   random   values   for   cryptographic   use,   use   a   CSPRNG.   
TOB-TEL-009   

  
❑   Use   a   development   framework   to   facilitate   complex   testing   scenarios   and   
integrate   it   into   a   CI/CD   pipeline.     TOB-TEL-010   

  
  
  
  
  
  

    

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   7  



Findings   Summary   

  
    

  

  

#    Title    Type    Severity   

1    Outdated   and   vulnerable   dependencies    Patching    Low   

2    Overly   permissive   cross-origin   resource   
sharing   (CORS)   settings   

Access   Controls   Medium   

3    Consider   using   Vault    Cryptography    Medium   

4    Consider   using   EdDSA   signatures    Cryptography    Informational   

5    Verbose   errors    Error   Reporting   Low   

6    Insufficient   logging    Auditing   and   
Logging   

Medium   

7    Insufficient   user   input   validation    Data   Validation    Informational   

8    Unbound   retries   could   lead   to   denial   of   
service   

Denial   of   
Service   

Medium   

9    Insecure   function   used   to   generate   signer   
nonce   

Cryptography    Low   

10   Insufficient   testing   coverage    Error   Reporting   Low   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   8  



1.   Outdated   and   vulnerable   dependencies   
Severity:   Low Difficulty:   Low   
Type:   Patching Finding   ID:   TOB-TEL-001   
Target:    package.json   

  
Description   
Although   dependency   scans   did   not   yield   a   direct   threat   to   the   codebase,    npm   audit    has   
identified   dependencies   with   known   vulnerabilities.   Because   of   the   sensitivity   of   the   
deployment   code   and   its   environment,   it   is   important   to   ensure   dependencies   are   not   
malicious.   Problems   with   dependencies   in   the   JavaScript   community   could   have   a   
significant   effect   on   the   Teller   system   as   a   whole.   The   output   detailing   the   identified   issues   
has   been   included   in    Appendix   C .   

  
Exploit   Scenario   
A   malicious   actor   identifies   an   outdated   node   module   with   an   existing   proof   of   concept   for   
a   known   security   vulnerability   and   uses   this   exploit   against   an   unwitting   user.   

  
Recommendations   
Short   term,   ensure   dependencies   are   up   to   date.   Several   node   modules   have   been   
reported   and   documented   as   malicious.   Keep   modules   up   to   date   and   verify   their   integrity   
after   installation.   

  
Long   term,   track   and   audit   dependencies   on   a   regular   basis.   It   is   not   uncommon   for   
dependencies   to   be   added   during   development   but   not   removed   when   no   longer   needed.   
Consider   integrating   automated   dependency   auditing   in   the   development   workflow.   If   
dependencies   cannot   be   updated   when   a   vulnerability   is   disclosed,   ensure   the   Teller   
codebase   does   not   use,   and   is   not   affected   by,   the   vulnerable   functionality   of   the   
dependency.   

  
  

    

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   9  



2.   Overly   permissive   cross-origin   resource   sharing   (CORS)   settings   
Severity:   Medium Difficulty:   Medium   
Type:   Access   Controls Finding   ID:   TOB-TEL-002   
Target:    validator,   data-service     

  
Description   
The   validator   and   data-service   applications   configure   cross-origin   resource   sharing   (CORS)   
headers   that   are   overly   permissive.   Since   CORS   settings   are   not   specified,   the   default   
asterisk   wild   flag   (*)   is   set   for   the    Access-Control-Allow-Origin    header.   As   a   result,   the   
application   can   receive   and   respond   to   requests   originating   from   unintended   endpoints.   

  

Figure   2.1:    validator/src/app.ts#L21 .   
  

Figure   2.2:    data-service/packages/backend/src/utils/wrap.ts#L3-12 .   
  

Figure   2.3:    data-service/packages/backend/src/dev-server.ts#L12 .   
  

Exploit   Scenario   
An   attacker   with   access   to   the   running   validator   service   sets   up   a   malicious   website   that   
interacts   with   the   service.   Users   interact   with   the   site   believing   they   are   using   a   legitimate   
client   for   the   validator   service.   The   attacker   can   then   provide   the   same   functionality   as   the   
service   while   simultaneously   logging   data   submitted   by   users,   including   transaction   data.   

  
Recommendation   
Short   term,   create   a   whitelist   of   endpoints   from   which   requests   are   expected.   This   list   can   
be   stored   in   configuration   files,   and   can   include    localhost    for   development.   Then,   when   a   
request   is   received,   validate   the   origin   of   the   request   with   the   whitelist,   and   set   the   
Access-Control-Allow-Origin    header   accordingly.      

  

  

expressServer. use ( cors ({     methods :    [ "POST" ]     }));   

export     const     wrap     =    (main:   Main):   Main    =>    {   
   return     async     function    (event:   ApiGatewayEvent)   {   
     const    result    =     await     main (event);   
     result. headers [ "Access-Control-Allow-Origin" ]     =     "*" ;   
    console. log (result);   
     return    result;   
   };  
};   

app. use ( cors ());   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   10  

https://github.com/teller-protocol/validator/blob/633b873e36463ad5483beeb313a5da10cbb73bc1/src/app.ts#L21
https://github.com/teller-protocol/data-service/blob/8dea396d02852c6495182a6c3b828855e16d1cfc/packages/backend/src/utils/wrap.ts#L5
https://github.com/teller-protocol/data-service/blob/4216a6538c9b9547a46bfc41bb9879c01e7ee33b/packages/backend/src/dev-server.ts#L12


3.   Consider   using   Vault   
Severity:   Medium Difficulty:   Medium   
Type:   Cryptography Finding   ID:   TOB-TEL-003   
Target:    data-service   

  
Description   
Hashicorp   Vault   is   an   all-in-one   key   and   secrets   management   solution   with   cache   
functionality.   Rather   than   keeping   the   RSA   passphrase   in   memory   as   an   environment   
variable—which   is   readable   by   anyone   who   has   local   access   with   sufficient   
permissions—we   can   request   the   passphrase   from   Vault   after   the   user   authenticates,   
thereby   keeping   the   passphrase   slightly   more   secret.   

  

Figure   3.1:   Key   passphrase   is   passed   as   an   environment   variable.   
( data-service/packages/backend/scripts/generate-key-pair.ts )   

  
Exploit   Scenario   
A   malicious   local   user   is   able   to   read   both   the   environment   variable   and   the   key   pair,   and   
creates   a   fake   service   pretending   to   be   the   authentic    data-service .   

  
Recommendations   
Short   term,   consider   letting   the   user   authenticate   the   private   key   manually.   

  
Long   term,   use   Hashicorp   Vault   and   one   of   its    Node.js    clients.      

  

  

const    RSA_KEY_PASSPHRASE   =   process.env.RSA_KEY_PASSPHRASE;   
if    (!RSA_KEY_PASSPHRASE)    throw     new    Error( "Bad   environment:   Missing   RSA_KEY_PASSPHRASE" );   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   11  

https://github.com/teller-protocol/data-service/blob/develop/packages/backend/scripts/generate-key-pair.ts


4.   Consider   using   EdDSA   signatures   
Severity:   Informational Difficulty:   Low   
Type:   Cryptography Finding   ID:   TOB-TEL-004   
Target:    data-service   

  
Description   
A   lot   can    silently   go   wrong    when   using   RSA   signatures.   While   the   default   settings   by   
crypto.generateKeyPairSync    should   be   secure,   elliptic   curve   signatures   offer   the   same   
signature   API,   at   the   same   security   levels,   at   greater   signing   speeds   and   smaller   key   sizes.   
ECDSA   by   itself   is   also   fragile,   but   EdDSA   is    slightly   more   resistant    to   the   subtle   elliptic   curve   
attacks   that   are   being   discovered   lately.   

  

Figure   4.1:   RSA   signatures   used   when   generating   key   pairs.   
( data-service/packages/backend/scripts/generate-key-pair.ts )   

  
Recommendation   
Short   term,   switch    "rsa"    to    "ed25519"    when   generating   key   pairs.      

  

  

const    keyPair   =   crypto.generateKeyPairSync( "rsa" ,   {   
  modulusLength:    4096 ,   
  publicKeyEncoding:   {   
    type:    "spki" ,   
    format:    "pem" ,   
  },   
  privateKeyEncoding:   {   
    type:    "pkcs8" ,   
    format:    "pem" ,   
    cipher:    "aes-256-cbc" ,   
    passphrase:   RSA_KEY_PASSPHRASE,   
  },   
});   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   12  

https://blog.trailofbits.com/2019/07/08/fuck-rsa/
https://blog.cr.yp.to/20191024-eddsa.html
https://github.com/teller-protocol/data-service/blob/54dd5bddfaf240e0d25ae24819461df650472959/packages/backend/scripts/generate-key-pair.ts#L6


5.   Verbose   errors   
Severity:   Low Difficulty:   Low   
Type:   Error   Reporting Finding   ID:   TOB-TEL-005   
Target:    validator   

  
Description   
The    validator    application   returns   verbose   error   messages   when   sending   a   request   with   a   
malformed   JSON   body.   The   returned   message   includes   internal   paths   for   node   modules   
responsible   for   JSON   parsing.   To   replicate,   send   a   POST   request   to   the   validator   service   
with   an   invalid   JSON.   

  

Figure   5.1:   Error   returned   in   response   to   invalid   JSON.   
  

Exploit   Scenario   
An   attacker   is   able   to   learn   about   internal   paths   and   libraries   used   by   the   application.   

  
Recommendations   
Short   term,   make   sure   that   JSON   parsing   errors   are   caught.   

  
Long   term,   add   unit   tests   that   check   for   different   forms   of   invalid   input,   and   consider   
fuzzing   the   application   to   determine   whether   additional   errors   result   in   verbose   errors   
returned   to   users.      

  

  

SyntaxError:   Unexpected   string   in   JSON   at   position   158<br>   &nbsp;   &nbsp;at   JSON.parse   
(&lt;anonymous&gt;)<br>   &nbsp;   &nbsp;at   parse   (/Users/au/Assessments/Teller/Internal   
Repo/audit-teller/client-code/validator/node_modules/body-parser/lib/types/json.js:89:19)<br 
>   &nbsp;   &nbsp;at   /Users/au/Assessments/Teller/Internal   
Repo/audit-teller/client-code/validator/node_modules/body-parser/lib/read.js:121:18<br>   
&nbsp;   &nbsp;at   invokeCallback   (/Users/au/Assessments/Teller/Internal   
Repo/audit-teller/client-code/validator/node_modules/raw-body/index.js:224:16)<br>   &nbsp;   
&nbsp;at   done   (/Users/au/Assessments/Teller/Internal   
Repo/audit-teller/client-code/validator/node_modules/raw-body/index.js:213:7)<br>   &nbsp;   
&nbsp;at   IncomingMessage.onEnd   (/Users/au/Assessments/Teller/Internal   
Repo/audit-teller/client-code/validator/node_modules/raw-body/index.js:273:7)<br>   &nbsp;   
&nbsp;at   IncomingMessage.emit   (events.js:203:15)<br>   &nbsp;   &nbsp;at   
IncomingMessage.EventEmitter.emit   (domain.js:448:20)<br>   &nbsp;   &nbsp;at   endReadableNT  
(_stream_readable.js:1145:12)<br>   &nbsp;   &nbsp;at   process._tickCallback   
(internal/process/next_tick.js:63:19)   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   13  



6.   Insu�ficient   logging   
Severity:   Medium Difficulty:   Medium   
Type:   Auditing   and   Logging Finding   ID:   TOB-TEL-006   
Target:    validator ,    contract-event-listener   

  
Description   
There   was   no   logging   strategy   for   any   of   the   services   audited.   Logging   was   only   done   with   
console.log    statements,   which   are   insufficient.   This   could   make   it   very   difficult   to   triage   
potential   bugs,   vulnerabilities,   and   intrusions.   As   a   result,   security-relevant   logging   
information   must   be   reconstructed   from   the   blockchain,   which   is   cumbersome   to   perform   
during   a   regulatory   audit   or   to   detect   when   an   intrusion   or   attack   has   occurred.   Attacks   on   
the   validator   application   may   be   very   difficult   to   detect   and   reconstruct   without   sufficient   
logging.   

  
Exploit   Scenario   
An   attacker   is   able   to   take   advantage   of   a   vulnerability   in   any   of   the   affected   applications   as   
a   result   of   code   changes   or   vulnerabilities   in   third-party   libraries.   Due   to   insufficient   log   
aggregation   and   centralization,   the   compromise   remains   unnoticed.     

  
Recommendations   
Short   term,   establish   alerting   on   the   aggregated   application   logs.   Log   exceptions,   
particularly   those   that   could   result   from   users   submitting   malicious   input.   

  
Long   term,   create   a   centralized   logging   strategy   that   aggregates   and   centralizes   application   
logs.   Ideally,   logs   could   be   submitted   to   cloud   solutions   such   as   Graphana   and   
ElasticSearch.   Additionally,   establish   alerts   on   abnormal   system   and   application   behaviors.   
This   should   include   a   baseline   of   operation,   and   alert   the   core   response   team   should   those   
values   exceed   their   normal   range.      

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   14  



7.   Insu�ficient   user   input   validation   
Severity:   Informational Difficulty:   Undetermined   
Type:   Data   Validation Finding   ID:   TOB-TEL-007   
Target:    validator   

  
Description   
The    validator    application   exposes   a   JSON-RPC   interface   to   users   over   the   internet.   
However,   it   lacks   sufficient   validation   of   user-submitted   data.   The   main   two   methods   
exposed   by   this   application   are    arrowheadCRA    and    accruedInterest .   Both   methods   
validate   datetime   values   and   borrow   assets   against   a   whitelist   of   accepted   wallet   assets.     

  
However,   some   values   are   not   sufficiently   validated   against   malicious   input,   including   
tokens   and   wallet   addresses   used   in   GraphQL   queries.   Additionally,    loanTermLength    is   not   
validated   against   negative   values.   

  
  While   it   was   not   possible   to   exploit   this   finding,   accepting   input   from   users   without   prior   
sanitization   and   validation   could   lead   to   a   number   of   attacks,   including   GraphQL   injection.   
Moreover,   as   the   project   grows   in   size   and   complexity,   new   vulnerabilities   may   be   
introduced   as   a   result   of   insufficient   input   validation,   such   as   Cross-Site   Scripting   (if   
malicious   input   is   reflected   on   a   front-end   client).   

  
Recommendations   
Short   term,   validate   all   user   requests   against   malicious   input.   

  
Long   term,   devise   a   centralized   strategy   for   validation   of   common   variables   submitted   by   
users,   such   as   wallet   addresses   and   tokens.      

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   15  



8.   Unbound   retries   could   lead   to   denial   of   service   
Severity:   Medium Difficulty:   High   
Type:   Denial   of   Service Finding   ID:   TOB-TEL-008   
Target:    data-service   

  
Description   
The    data-service    source   code   contains   a   function,    getAssetReportRetry ,   used   to   pull   
reports   from   a   Plaid   client.   This   function   is   called   recursively   if   the   request   to   Plaid   fails.   
Each   time   the   function   is   called,   the   request   to   Plaid   is   delayed   by   an   increasing   amount   of   
time.   However,   there   are   no   measures   in   place   to   prevent   the   function   from   being   called   
indefinitely   if   there’s   an   issue   with   the   Plaid   client   or   the   values   submitted   in   the   request   to   
Plaid.     

  

Figure   8.1:   Key   passphrase   is   passed   as   an   environment   variable.   
( /data-service/packages/backend/src/lambdas/bank-info/get-asset-report.ts#L23 

-34 )   
  

Exploit   Scenario   
An   issue   with   Plaid   causes   the   function   to   be   continuously   called   for   one   or   more   requests.   
This   could   result   in   exhaustion   of   resources   and   denial-of-service   conditions.     

  
Recommendation   
Short   term,   establish   a   maximum   number   of   retries.   Check   against   that   value   whenever   the   
function   in   question   gets   called,   and   return   an   error   after   that   number   is   reached.      

  

  

export     async     function    getAssetReportRetry(assetReportToken:   string,   retries   =    0 ):   

Promise<plaid.AssetReport>   {   

   try    {   

     return    ( await    plaidClient.getAssetReport(assetReportToken,    false )).report;   

  }    catch    (e)   {   

    retries++;   

     return     await     new    Promise((resolve)    =>    {   

      setTimeout( async    ()    =>    {   

        resolve( await    getAssetReportRetry(assetReportToken,   retries));   

      },   ( 1    +   retries)   *    2000 );   

    });   

  }   

}   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   16  

https://github.com/teller-protocol/data-service/blob/b30f77a85d1fd9dc5a8f62a1aacbc70df9ab243a/packages/backend/src/lambdas/bank-info/get-asset-report.ts#L23
https://github.com/teller-protocol/data-service/blob/b30f77a85d1fd9dc5a8f62a1aacbc70df9ab243a/packages/backend/src/lambdas/bank-info/get-asset-report.ts#L23


9.   Insecure   function   used   to   generate   signer   nonce   
Severity:   Low Difficulty:   High   
Type:   Cryptography Finding   ID:   TOB-TEL-009   
Target:    validator   

  
Description   
The    validator    application   generates   a   signer   nonce   using   the   JavaScript   function   
Math.Random() ,   which   is   not   a    cryptographically   secure   pseudo-random   number   generator   
(CSPRNG) .   In   this   particular   application,   using   a   CSPRNG   is   not   essential,   but   it   is   considered   
best   practice   to   use   them   whenever   generating   random   values   in   cryptography.  

  

Figure   9.1:   Math.random   used   for   nonce   generation.   
( /validator/methods/accruedInterest/index.ts#L194-206 )   

  

  

  

const    signerNonce   =   (Math.random()   *    20000 ).toFixed( 0 );   

const    signature   =    await    web3.eth.sign(   

  hashResponse({   

    consensusAddress,   

    chainId,   

    interest,   

    requestHash,   

    responseTime,   

    signerNonce,   

  }),  

  signer,   

);   

   const    signerNonce   =   (Math.random()   *    20000 ).toFixed( 0 );   

  

   const    response   =   {   

    chainId,   

    collateralRatio,   

    consensusAddress,   

    interestRate:   interestRate.toString(),   

    maxLoanAmount:   loanSize.toString(),   

    signerNonce,   

    requestHash,   

    responseTime:   Big(requestTime).add( 5 ).toString(),   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   17  

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://github.com/teller-protocol/validator/blob/8dfddf6ca496dffb4712b39a80c23657c3e87f64/src/methods/accruedInterest/index.ts#L194


Figure   9.2:    Math.random    used   for   nonce   generation.   
( validator/methods/arrowheadCRA/index.ts#L169-180 )   

  
Exploit   Scenario   
An   attacker   is   able   to   repeatedly   generate   and   observe   nonce   values   in   a   sequential   
manner   and   may   be   able   to   deduce   the   pseudo-random   number   generator's   internal   state.   
With   this   knowledge,   an   attacker   can   perform   an   offline   calculation   and   predict   future   
nonce   values   generated   to   confirm   transactions.   As   a   result,   the   attacker   may   be   able   to   
spoof   responses,   provided   they   know   the   other   values   used   to   generate   such   responses.   

  
Recommendations   
Short   term,   replace   the   use   of    math.random    with   a   CSPRNG.   

  
Long   term,   whenever   generating   random   values   for   cryptographic   use,   use   a   CSPRNG.      

  

  

  };   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   18  

https://github.com/teller-protocol/validator/blob/4ffbb031264c5de41dae5ed73ca513f1a3894b72/src/methods/arrowheadCRA/index.ts#L169


10.   Insu�ficient   testing   coverage     
Severity:   Low    Difficulty:   Low   
Type:   Error   Reporting Finding   ID:   TOB-TEL-010   
Target:    validator ,    contract-event-listener   

  
Description   
The    validator    codebase   does   not   include   sufficient   test   cases.   Robust   unit   and   integration   
tests   are   critical   for   catching   the   introduction   of   certain   bugs   and   logic   errors   early   in   the   
development   process.   Projects   should   strive   for   thorough   coverage   against   bad   inputs   as   
well   as   "happy   path"   scenarios.   This   will   greatly   increase   confidence   in   the   functionality   of   
the   code   for   users   and   developers   alike.   

  
Additionally,   unit   tests   are   a   beneficial   addition   for   the   testing   architecture   to   verify   that   
subsets   of   the   application   work   locally   as   expected.   These   tests   allow   developers   to   
effectively   detect   early   inconsistencies   in   code   behavior   before   deployment.   

  
Exploit   Scenario   
Teller   discovers   a   bug   in   the   application   and   writes   a   patch   to   update   it.   The   new   code   
causes   backward   incompatibility   and   deviates   from   the   contract’s   expected   behavior.   Due   
to   insufficient   testing   coverage,   this   is   not   caught   by   the   testing   suite.   

  
Recommendations   
Short   term,   add   thorough   unit   and   integration   tests   for   the   codebase   using   a   development   
framework   to   facilitate   more   complicated   testing   scenarios.   

  
Long   term,   use   a   development   framework   to   facilitate   complex   testing   scenarios   and   
integrate   it   into   a   CI/CD   pipeline.      

  

  

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   19  



A.   Vulnerability   Classifications   

  
  

  

  

Vulnerability   Classes   

Class    Description   

Access   Controls    Related   to   authorization   of   users   and   assessment   of   rights   

Auditing   and   Logging    Related   to   auditing   of   actions   or   logging   of   problems   

Authentication    Related   to   the   identification   of   users   

Configuration    Related   to   security   configurations   of   servers,   devices,   or   
software   

Cryptography    Related   to   protecting   the   privacy   or   integrity   of   data   

Data   Exposure    Related   to   unintended   exposure   of   sensitive   information   

Data   Validation    Related   to   improper   reliance   on   the   structure   or   values   of   data   

Denial   of   Service    Related   to   causing   system   failure   

Error   Reporting    Related   to   the   reporting   of   error   conditions   in   a   secure   fashion   

Patching    Related   to   keeping   software   up   to   date   

Session   Management    Related   to   the   identification   of   authenticated   users   

Timing    Related   to   race   conditions,   locking,   or   order   of   operations  

Undefined   Behavior    Related   to   undefined   behavior   triggered   by   the   program   

Severity   Categories   

Severity    Description   

Informational    The   issue   does   not   pose   an   immediate   risk,   but   is   relevant   to   security   
best   practices   or   Defense   in   Depth   

Undetermined    The   extent   of   the   risk   was   not   determined   during   this   engagement   

Low    The   risk   is   relatively   small   or   is   not   a   risk   the   customer   has   indicated   is   
important   

Medium    Individual   user   information   is   at   risk,   exploitation   would   be   bad   for   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   20  



  

  
   

  

  

client’s   reputation,   moderate   financial   impact,   possible   legal   
implications   for   client   

High    Large   numbers   of   users,   very   bad   for   client’s   reputation,   or   serious   
legal   or   financial   implications   

Difficulty   Levels   

Difficulty    Description   

Undetermined    The   difficulty   of   exploit   was   not   determined   during   this   engagement   

Low    Commonly   exploited,   public   tools   exist   or   can   be   scripted   that   exploit   
this   flaw   

Medium    Attackers   must   write   an   exploit,   or   need   an   in-depth   knowledge   of   a   
complex   system   

High    The   attacker   must   have   privileged   insider   access   to   the   system,   may   
need   to   know   extremely   complex   technical   details,   or   must   discover   
other   weaknesses   in   order   to   exploit   this   issue   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   21  



B.   Code   Quality   Recommendations  
  

Insufficient   Error   Handling   
The    validator    catches   most   errors   by   using   a   wrapper   function   that   only   checks   whether   
an   error   has   the   property    business    before   returning   a   generic   error   message.   
  

Figure   B.1:   Several   error   types   were   not   handled.   
( /validator/src/methods/wrapper.ts#L5-20 )   

  
Additionally,   some   error-handling   logic   appeared   to   be   incomplete.   For   instance,   the   code   
snippet   below   shows   several   error   types   in   response   to   requests   to   endpoints   that   
obtained   bank   data   for   a   given   user.   Several   error   types   were   not   handled   appropriately.   

  

  

  

export     const     wrapper    =   < P ,    R >(   

   fn :   ( params :    P )    =>     Promise < R >,   

):   (( params :    P )    =>     Promise < R    |    JSONRPCError >)    =>    {   

   return     async     function    ( params :    P ):    Promise < R    |    JSONRPCError >   {   

     try    {   

       return     await     fn ( params );   

    }    catch    ( e )   {   

       if    ( e . business )   {   

         return    {    message:     e . message    };   

      }    else    {   

         log ( e );   

         return    {    message:     "Internal   Error"    };   

      }   

    }  

  };   

};   

   if    (response.error)   {   

    console.log(response.error);   

     switch    (response.error.code)   {   

       case     "BAD_REQUEST" :   

         break ;   

       case     "INTERNAL_ERROR" :   

         break ;   

       case     "PROPERTY_FAILS" :   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   22  

https://github.com/teller-protocol/validator/blob/f5aa8a9a8062e398dfa2a97f3dbc70bc340194f2/src/methods/wrapper.ts#L5


Figure   B.2:   Several   error   types   were   not   handled.   
( /validator/src/methods/arrowheadCRA/helpers/bank-info.ts#L32-49 )   

  
Code   200   returned   even   on   failed   requests   
All   failed   requests   to   the    validator    project,   not   including   those   containing   invalid   JSON  
requests,   returned   a   200   response.   This   can   be   ineffective   from   a   user   experience   
perspective,   and   can   make   it   difficult   to   log   and   monitor   potential   issues   in   the   codebase.   

  

Figure   B.3:   A   200   response   is   received   even   when   the   request   fails.   
  
  

    

  

  

         break ;   

       case     "UNAUTHORIZED" :   

         break ;   

    }  

     throw     "BANK_INFO_FAILED" ;   

  }    else    {   

     //   TODO:   make   sure   math   checks   out   with   possible   values   here   

     //   OR   fence   against   unnatural   values   

     return    response.payload;   

  }   

HTTP/1.1   200   OK   

X-Powered-By:   Express   

Access-Control-Allow-Origin:   *   

content-length:   62   

content-type:   application/json;   charset=utf-8   

Date:   Tue,   01   Dec   2020   20:27:46   GMT   

Connection:   close   

  

{"jsonrpc":"2.0","id":1,"result":{"message":"Internal   Error"}}   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   23  

https://github.com/teller-protocol/validator/blob/592a6ad29e933fd04ad2c78d6ac9eab494742876/src/methods/arrowheadCRA/helpers/bank-info.ts#L32


C.   Vulnerable   Dependencies   
contract-event-listener   

  
data-service   

  
subgraph   

  
web2   

  
  
  

  

  

CVE    Module    Dependency   of    Title    Info   

CVE-2019-10744   lodash   knex ,    lodash ,   
rsmq-worker ,   
eslint   

Prototype   
Pollution   

https://npmjs 
.com/advisori 
es/1523   

  

CVE    Module    Dependency   of    Title    Info   

CVE-2020-8116   dot-prop   lerna   Prototype   
Pollution   

https://npmjs 
.com/advisori 
es/1213   

CVE-2020-15168   node-fetch   codecov ,    lerna  Denial   of   
Service   

https://npmjs 
.com/advisori 
es/1556   

CVE    Module    Dependency   of    Title    Info   

N/A    yargs-parser   @graphprotocol/ 
graph-cli   

Prototype   
Pollution   

https://npmjs 
.com/advisori 
es/1500   

CVE-2020-7720   node-forge   @graphprotocol/ 
graph-cli   

Prototype   
Pollution   in   
node-forge   

https://npmjs 
.com/advisori 
es/1561   

CVE    Module    Dependency   of    Title    Info   

N/A    web3    web3    Insecure   
Credential   
Storage   

https://npmjs 
.com/advisori 
es/877   

N/A    serialize-ja 
vascript   

mocha    Remote   Code   
Execution   

https://npmjs 
.com/advisori 
es/1548   

©   2020   Trail   of   Bits    Teller   Protocol   Assessment   |   24  

https://github.com/advisories/GHSA-jf85-cpcp-j695
https://npmjs.com/advisories/1523
https://npmjs.com/advisories/1523
https://npmjs.com/advisories/1523
https://github.com/advisories/GHSA-ff7x-qrg7-qggm
https://npmjs.com/advisories/1213
https://npmjs.com/advisories/1213
https://npmjs.com/advisories/1213
https://github.com/advisories/GHSA-w7rc-rwvf-8q5r
https://npmjs.com/advisories/1556
https://npmjs.com/advisories/1556
https://npmjs.com/advisories/1556
https://npmjs.com/advisories/1500
https://npmjs.com/advisories/1500
https://npmjs.com/advisories/1500
https://github.com/advisories/GHSA-92xj-mqp7-vmcj
https://npmjs.com/advisories/1561
https://npmjs.com/advisories/1561
https://npmjs.com/advisories/1561
https://npmjs.com/advisories/877
https://npmjs.com/advisories/877
https://npmjs.com/advisories/877
https://npmjs.com/advisories/1548
https://npmjs.com/advisories/1548
https://npmjs.com/advisories/1548

