
September 18th 2020 — Quantstamp Verified

Teller Protocol

This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Executive Summary

Type Lending platform

Auditors Alex Murashkin, Senior Software Engineer
Poming Lee, Research Engineer
Kevin Feng, Software Engineer

Timeline 2020-06-25 through 2020-07-27

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification,
Manual Review

Specification

README.md
Inline code comments

Medium article

Documentation Quality Medium

Test Quality High

Source Code
Repository Commit

teller-protocol-v1 dd7d2ac

teller-protocol-v1 6c40d64

Total Issues 15 (8 Resolved)

High Risk Issues 2 (1 Resolved)

Medium Risk Issues 3 (3 Resolved)

Low Risk Issues 8 (4 Resolved)

Informational Risk Issues 2 (0 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

High Risk The issue puts a large number
of users’ sensitive information
at risk, or is reasonably likely to
lead to catastrophic impact for
client’s reputation or serious
financial implications for client
and users.

Medium Risk The issue puts a subset of
users’ sensitive information at
risk, would be detrimental for
the client’s reputation if
exploited, or is reasonably
likely to lead to moderate
financial impact.

Low Risk The risk is relatively small and
could not be exploited on a
recurring basis, or is a risk that
the client has indicated is low-
impact in view of the client’s
business circumstances.

Informational The issue does not post an
immediate risk, but is relevant
to security best practices or
Defence in Depth.

Undetermined The impact of the issue is
uncertain.

Unresolved Acknowledged the existence of
the risk, and decided to accept
it without engaging in special
efforts to control it.

Acknowledged The issue remains in the code
but is a result of an intentional
business or design decision. As
such, it is supposed to be
addressed outside the
programmatic means, such as:
1) comments, documentation,
README, FAQ; 2) business
processes; 3) analyses showing
that the issue shall have no
negative consequences in
practice (e.g., gas analysis,
deployment settings).

Resolved Adjusted program
implementation, requirements
or constraints to eliminate the
risk.

Mitigated Implemented actions to
minimize the impact or
likelihood of the risk.

https://medium.com/fabrx-blockchain/meet-zero-collateral-dcfe27fb3a2d
https://github.com/teller-protocol/teller-protocol-v1
https://github.com/teller-protocol/teller-protocol-v1/tree/dd7d2acc1e8312e23f05e1fd5961ff11f31d2f0d
https://github.com/teller-protocol/teller-protocol-v1
https://github.com/teller-protocol/teller-protocol-v1/tree/6c40d6448512f6c6034bc3ee3db7bd1b3cb64f0d

Summary of Findings

During auditing, we found potential issues of various levels of severity: two high-severity, three medium-severity, eight low-severity issues, as

well as two informational-level findings. The code looks well-structured and concise, however, there are significant security considerations that need

to be addressed before the live deployment.

15

Test coverage is nearing 100%, however, we suggest adding coverage to certain lines and branches, as well as covering more edge cases and

access control scenarios that are not reflected in the coverage measures.

And finally, we made best practices recommendations which include naming, consistency, input validation, and other suggestions.20
We highly recommend addressing the findings before going live.

:Update as of commit dd7d2ac
The team addressed issues in multiple pull requests and documentation changes that were reviewed by the Quantstamp team.

1. Best practices were addressed in .the pull request #68

2. Major findings were addressed in the pull requests: , , and .#70 #71 #74

3. Documentation and unit test improvements were made in the pull requests , , , and .#81 #83 #84 #85

The findings , and were deemed as non-issues (not worth fixing and already matching the expected behaviour, respecively) after

discussing with the Teller Protocol team. was marked as a false-positive (but kept in the report in order not to break the numbering

sequence).

QSP-14 QSP-15
QSP-3

Next, the findings , , , and represent risks of various severities that . For example,

involves a design choice of using off-chain components that take part in security-critical operations such as deciding on interest rates and

maximum loan amount. The Teller team acknowledged the risks and .

QSP-2 QSP-6 QSP-9 QSP-11 remain present in the code QSP-2

documented them

And finally, is not an issue as long as the number of off-chain nodes remain low: the gas limits would be reached at the simultaneous

processing responses, which is higher than the number the Teller Protocol team is planning to use (-).

QSP-13
~140 6 8

ID Description Severity Status

QSP-1 Potential reuse of response signatures across contracts High Fixed

QSP-2 Risky reliance on extremely privileged off-chain components High Acknowledged

QSP-3 [False-positive] Collateral value disconnected from real value Medium Fixed

QSP-4 Potential DoS due to uninitialized timeLastAccrued Medium Fixed

QSP-5 Sybil attack risks Medium Fixed

QSP-6 Risky reliance on price oracles Low Acknowledged

QSP-7 Discrepancy of with the
documentation

liquidationPayment(...) Low Fixed

QSP-8 Missing balance checks for transfers of token that are not fully ERC-
20 compliant

Low Fixed

QSP-9 Privileged Roles and Ownership Low Acknowledged

QSP-10 not working for small positive valuesisWithinTolerance(...) Low Fixed

QSP-11 Block Timestamp Manipulation Low Acknowledged

QSP-12 Lack of integer overflow checks in oracle computations Low Fixed

QSP-13 Gas Usage / Loop Concernsfor Low Acknowledged

QSP-14 Method visibility is too open Informational Acknowledged

QSP-15 Disparity between andChainlinkPairAggregator
InverseChainlinkPairAggregator

Informational Acknowledged

https://github.com/teller-protocol/teller-protocol-v1/pull/68
https://github.com/teller-protocol/teller-protocol-v1/pull/70
https://github.com/teller-protocol/teller-protocol-v1/pull/71
https://github.com/teller-protocol/teller-protocol-v1/pull/74
https://github.com/teller-protocol/teller-protocol-v1/pull/81
https://github.com/teller-protocol/teller-protocol-v1/pull/83
https://github.com/teller-protocol/teller-protocol-v1/pull/84
https://github.com/teller-protocol/teller-protocol-v1/pull/85
https://app.gitbook.com/@teller/s/teller-1/contracts/overview

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

: All line numbers in the findings are relative to the commit .Note 6c40d64

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to
Quantstamp describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we

run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

commit sha: ab387e1• Maian

v0.2.7• Mythril

v0.6.6• Slither

Steps taken to run the tools:

1. Cloned the MAIAN tool: git clone --depth 1 https://github.com/MAIAN-tool/MAIAN.git maian

2. Ran the MAIAN tool on each contract: cd maian/tool/ && python3 maian.py -s path/to/contract contract.sol

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

5. Installed the Slither tool: pip install slither-analyzer

6. Run Slither from the project directory: sslither .

Findings

QSP-1 Potential reuse of response signatures across contracts

https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril
https://github.com/crytic/slither

Severity: High Risk

FixedStatus:

File(s) affected: Multiple

One example: the contracts and share the same format for and

. If the two contracts are initialized with different values for , the two contracts become vulnerable,

since someone could reuse the values for approving one loan type for getting a loan of a different type.

Description: TokenCollateralLoans EtherCollateralLoans LoanRequest
LoanResponse loanTermsConsensusAddress

The same issue could exist for other contracts. For example, if two instances of is deployed, the same exploit scenario is possible.Lenders.sol

Recommendation:

1. Enforcing a single location for keeping track of the used requests and signatures.

2. When releasing a new version of the contracts, making sure no two stacks are run in parallel or signature verification logic is incompatible across the stacks.

QSP-2 Risky reliance on extremely privileged off-chain components

Severity: High Risk

AcknowledgedStatus:

By design of the Teller Protocol, off-chain components are involved in security-critical operations such as deciding on interest rates and

maximum loan amount. While an issue localized to a small fraction of the nodes can be handled by the system, a significant malfunction of nodes can

cause catastrophic consequences to the system. Examples include hypothetical scenarios when all nodes incorrectly return a zero for interest rates or a

disproportionally high maximum loan amount after, for instance, a simultaneous software upgrade of nodes to a version containing a bug.

Description:

Additionally, it is unclear how available liquidity is tracked in the system. In case loans get mistakenly approved, all available tokens would be drained

from Compound and given out as loans until it is no longer possible to do so. It is unclear if such a risk is expected.

The off-chain components are not in the scope of the current audit engagement. However, we recommend:Recommendation:

1. Acknowledging and documenting the risks, including a description of the risks in public user-facing documentation.

2. Considering adding alerting and testing the off-chain components to reduce the likelihood of a malfunction.

3. Considering adding additional guards to the contract: for instance, not allowing to loan above a certain soft-cap, to mitigate the risks.

4. Adding tracking for liquidity and the necessary checks to enforce the minimum liquidity.

QSP-3 [False-positive] Collateral value disconnected from real value

Severity: Medium Risk

FixedStatus:

File(s) affected: base/LoansBase.sol

In , : the function only checks if the falls below the

, which is only set when the loan is created and is never updated. In case of a significant price drop

of collateral, the liquidator is unable to liquidate any collateral since the condition check is only based on the

without taking the actual USD price of the collateral into consideration.

Description: base/LoansBase.sol L255 liquidateLoan(...) collateral
loans[loanID].loanTerms.collateralRatio

loans[loanID].loanTerms.collateralRatio

Considering relying on the fiat value of collateral for loans.Recommendation:

: the team provided an explanation, and the issue was marked as false-positive.Update

QSP-4 Potential DoS due to uninitialized timeLastAccrued

Severity: Medium Risk

FixedStatus:

File(s) affected: base/Lenders.sol

In , : the requirement

is likely to be violated for the first call since is not initialized. This causes the method

to be unusable unless is set to initially, and it is unclear whether this is expected.

Description: base/Lenders.sol L91 accruedInterest[request.lender].timeLastAccrued == request.startTime
setAccruedInterest(...) timeLastAccrued

setAccruedInterest request.startTime 0

Clarifying the expectation. Initializing with .Recommendation: timeLastAccrued request.endTime

QSP-5 Sybil attack risks

Severity: Medium Risk

FixedStatus:

In OpenZeppelin's implementation, the is designed in a way that allows signers to add other signers:Description: SignerRole

function addSigner(address account) public onlySigner {
_addSigner(account);

}

This opens an opportunity for a misbehaving node to perform a Sybil attack by whitelisting multiple other accounts and taking part in consensus, thus

bypassing the threshold, undermining the fault-tolerance properties of the system.requiredSubmissions

Checking if the behavior is expected. If it is expected, acknowledging the potential security risk. If it is unexpected, changing the logic

to only allowing the owner to whitelist the signers.

Recommendation:

QSP-6 Risky reliance on price oracles

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: base/LoansBase.sol

Using third-party smart contracts such as price oracles may impose security risks. The lending platform's security depends on how reliable

the oracle implementation is.

Description:

We suggest clearly documenting the risks of reliance on third-party price feeds to end-users.Recommendation:

QSP-7 Discrepancy of with the documentationliquidationPayment(...)

Severity: Low Risk

FixedStatus:

File(s) affected: base/LendingPool.sol

In , : the method transfers tokens from the liquidator to the lending pool. The

comment on says "Once a loan is liquidated, it transfers the amount in tokens the liquidator address" which contradicts the actual behavior of

the method - transferring the liquidator address. In addition, says "liquidator address to receive the tokens", and the method

is equivalent to in terms of the actual behavior.

Description: LendingPool.sol L176 liquidationPayment(...)
L172 to

from L174
liquidationPayment(...) repay(...)

Fixing the comment to clarify the expected behavior. Fixing the method accordingly.Recommendation: liquidationPayment

QSP-8 Missing balance checks for transfers of token that are not fully ERC-20 compliant

Severity: Low Risk

FixedStatus:

File(s) affected: base/TokenCollateralLoans.sol

In , the checks in and in are

insufficient because not all ERC20 contacts correctly implement the return value. Some of them may simply return without actually checking the

success of a transfer operation.

Description: base/TokenCollateralLoans.sol L161 L178 contracts\base\TokenCollateralLoans.sol
true

Implement a balance check right after lines and to guarantee the success of the transfer.Recommendation: L161 L178

QSP-9 Privileged Roles and Ownership

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: base/Settings.sol

Smart contracts will often have an owner-like variable to designate the person with special privileges to make modifications to the smart

contract.

Description:

is fully controlled by the "Pauser" which is the Teller team. Functions like can be misused to lower tolerance in

order to temporarily break the system's security.

Settings.sol setMaximumTolerance

Clearly documenting the privileged roles in the user documentation. Being aware of the potential risks of the private keys leaking to

the public (e.g., through social engineering). Considering a recovery mechanism in case a private key is lost.

Recommendation:

QSP-10 not working for small positive valuesisWithinTolerance(...)

Severity: Low Risk

FixedStatus:

File(s) affected: utils/NumbersList.sol

In , in the function , the call

() would revert in case the parameter is above 100%.

Description: utils/NumbersList.sol isWithinTolerance(...) minTolerance =
average.sub(toleranceAmount) L60 threshold

Adding input validation for threshold in the contract.Recommendation: Settings

QSP-11 Block Timestamp Manipulation

Severity: Low Risk

AcknowledgedStatus:

Projects may rely on block timestamps for various purposes. However, it's important to realize that miners individually set the timestamp of

a block, and attackers may be able to manipulate timestamps for their own purposes. If a smart contract relies on a timestamp, it must take this into

account.

Description:

is used in , . This allows miners to manipulate timestamps in order to:now LoansBase.sol Consensus.sol

1. Take out a loan later than expected (i.e., with expired loan terms)

2. Liquidate a loan earlier (i.e., before its expiry)

Recommendation:

1. Acknowledging and clearly documenting the risks associated with timestamp manipulation.

2. Confirming that the timestamp granularity (+-15s) is acceptable for the current domain.

QSP-12 Lack of integer overflow checks in oracle computations

Severity: Low Risk

FixedStatus:

File(s) affected: providers/chainlink/ChainlinkPairAggregator.sol

In , : the method performs unbounded

exponentiation and multiplication without overflow checks.

Description: providers/chainlink/ChainlinkPairAggregator.sol L73 _normalizeResponse(...)

It is recommended to add integer overflow checks or using or an equivalent logic.Recommendation: SafeMath

QSP-13 Gas Usage / Loop Concernsfor

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: base/InterestConsensus.sol, base/LoanTermsConsensus.sol

Gas usage is the main concern for smart contract developers and users, since high gas costs may prevent users from wanting to use the

smart contract. In addition, some gas usage issues may prevent the contract from providing services entirely. For example, if a loop requires too

much gas to exit, then it may prevent the contract from functioning correctly entirely.

Description:

for

In the consensus logic, there are iterations over multiple responses (, and ,

):

base/InterestConsensus.sol L46 base/LoanTermsConsensus.sol
L51

for (uint256 i = 0; i < responses.length; i++) {
_processResponse(request, responses[i], requestHash);

}

At a certain , a transaction may take too much gas to execute and will exceed the block gas limit. This imposes a hard limit on the

number of nodes that are possible to use for consensus.

responses.length

It is recommended to analyze the gas usage to determine the maximum number of that the contract is capable of

handling. If this number is satisfactory, no action is needed. If it is too low, it is recommended to change the logic accordingly.

Recommendation: responses

: the team conducted gas usage analysis and concluded that gas limits will not be exceeded for the number of responses the team is planning to

use.

Update

QSP-14 Method visibility is too open

Severity: Informational

AcknowledgedStatus:

File(s) affected: base\InterestConsensus.sol, base/Lenders.sol

1. In : , could be made .Description: base\InterestConsensus.sol _hashResponse _hashRequest private

1. In : should be set to .base\Lenders.sol _areAddressesEqual private

It is suggested to adjust the method visibility to .Recommendation: private
the Teller Protocol team explained that marking method visibility as "private" would lead to inability to use the methods in tests. In such case, we

suggested not to make any changes.

Update:

QSP-15 Disparity between andChainlinkPairAggregator InverseChainlinkPairAggregator

Severity: Informational

AcknowledgedStatus:

An expected relationship between and is unclear, however, ,

of the latter does not appear to be an inverse of of the former.

Description: ChainlinkPairAggregator InverseChainlinkPairAggregator L34
_inverseValue(...) _normalizeResponse

Clarifying the expected behavior and fixing the actual behavior as necessary.Recommendation:

the Teller Protocol team clarified the behaviour, and the disparity is expected, since the values calculated in the two classes are not expected to

be the mathematical inverses of one another.

Update:

Code Documentation

1. The codebase is lacking developer documentation in most of the contract files. It is recommended to add developer documentation, describing the

purpose for each method, parameter, and return values.

2. The codebase is lacking overall specification and documentation. Details on how consensus works and interacts with Teller Protocol contacts should

be made clear to the end-users. Additionally, there needs to be a specification for the off-chain components.

Adherence to Best Practices

There are several suggestions on improving best practices:

1. in : it is suggested to rename into . .L335 contracts\base\LoansBase.sol requireCollateral moreCollateralRequired Fixed

2. in , would be a more suitable variable name than . .L411 base\LoansBase.sol tokenValue weiValue Fixed

3. in , would be a more suitable variable name than . .L420 base\LoansBase.sol weiValue tokenValue Fixed

4. in function name is recommended to change into instead. .L29 util\NumbersList.sol totalValues valuesCount Fixed

5. in parameter name is suggested to change into instead. .L49 util\NumbersList.sol tolerance tolerancePercentage Fixed

6. in should validate that isn’t 0x0 by using function

. .

function initialize contracts\base\Consensus.sol settingAddress
requireNotEmpty Not an issue

7. in should use the function instead. .L51 base\Consensus.sol requireNotEmpty Fixed

8. , the function in would be a good practice to check if is also a contract (using

OpenZeppelin utils). .

base\Base.sol _initialize(...) L64 settingsAddress
Fixed

9. In , : the function the function should revert if the amount that is to be withdrawn is greater than the

amount available to avoid unexpected behavior. .

base/Lenders.sol L118 withdrawInterest
Fixed

10. , : the public variable is not used. (it is not used, however, it serves the

purpose of implementing the interface definition).

base\EtherCollateralLoans.sol L25 collateralToken Not an issue

11. the function (specified in) is not implemented in this contract.

.

base\LendingPool.sol lendingToken() LendingPoolInterface Not an

issue

12. , function: adding a statement to check in the for consistency. .base\LoansBase.sol repay(...) require amount > 0 Fixed

13. , for consistency, use to check the non-zero addresses . .base\LoansBase.sol AddressLib.sol L361-363 Fixed

14. , : the comment should be

. .

base\LoansBase.sol L187 // the pays at x% of collateral price // the liquidator pays x% of
the collateral price Fixed

15. , the function seems to create an entirely new loan () instead of just setting the loan

terms, it is recommended to give this function a name that better reflects the side effect. .

base\TokenCollateralLoans.sol setLoanTerms L84
Fixed

16. , : should be (for consistency, use

). .

base\Consensus.sol L51 callerAddress != address(0) callerAddress.requireNotEmpty(...)
AddressLib Fixed

17. , : the comment mentions , however, is used for Ether loans too. .base\LoansBase.sol L119 tokens LoansBase Fixed

18. , would succeed in case of the amount, unclear if this is expected. Update: .base\LoansBase.sol withdrawCollateral(...) 0 Not an issue

19. A typo: => in . ._processReponse _processResponse InterestConsensus.sol Fixed

20. The event in , is emitted even when the loan is not fully repaid, which could be misleading.

: the behavior is intentional.

LoanRepaid base/LoansBase.sol L241
Acknowledged

Test Results

Test Suite Results

All the current tests pass within a reasonable time.

Contract: ERC20TransferTest
JSON file created at './build/soliditycoverage_1595684956492.json'.

with _1_basic
✓ .transfer => user : Should be able transfer tokens. (122ms)

with _1_basic

✓ .transfer => user : Should NOT be able transfer tokens. MustFail . (54ms)

Contract: AddressLibTest
with _1_basic

✓ .isEmpty => user : Should be able to test whether address is empty or not.
with _2_empty

✓ .isEmpty => user : Should be able to test whether address is empty or not.
with _1_basic

✓ .isNotEmpty => user : Should be able to test whether address is empty or not.
with _2_empty

✓ .isNotEmpty => user : Should be able to test whether address is empty or not.
with _1_basic

✓ .requireNotEmpty => user : Should be able to require address is not empty.
with _2_empty

✓ .requireNotEmpty => user : Should be able to require address is not empty.
with _1_basic

✓ .requireEmpty => user : Should be able to require address is not empty.
with _2_empty

✓ .requireEmpty => user : Should be able to require address is not empty.
with _1_basic

✓ .isEqualTo => user : Should be able to test whether two addresses are equal or not.
with _2_equalEmpty

✓ .isEqualTo => user : Should be able to test whether two addresses are equal or not.
with _3_emptyAndNotEmpty

✓ .isEqualTo => user : Should be able to test whether two addresses are equal or not.
with _4_equal

✓ .isEqualTo => user : Should be able to test whether two addresses are equal or not.
with _1_basic

✓ .isNotEqualTo => user : Should be able to test whether two addresses are equal or not.
with _2_equalEmpty

✓ .isNotEqualTo => user : Should be able to test whether two addresses are equal or not.
with _3_emptyAndNotEmpty

✓ .isNotEqualTo => user : Should be able to test whether two addresses are equal or not.
with _4_equal

✓ .isNotEqualTo => user : Should be able to test whether two addresses are equal or not.
with _1_basic

✓ .requireEqualTo => user : Should be able to require address is not empty.
with _2_emptyEqual

✓ .requireEqualTo => user : Should be able to require address is not empty.
with _3_notEqual

✓ .requireEqualTo => user : Should be able to require address is not empty.
with _1_basic

✓ .requireNotEqualTo => user : Should be able to require address is not empty.
with _2_basic

✓ .requireNotEqualTo => user : Should be able to require address is not empty.
with _3_emptyEqual

✓ .requireNotEqualTo => user : Should be able to require address is not empty.
with _4_notEmptyEqual

✓ .requireNotEqualTo => user : Should be able to require address is not empty.

Contract: NumbersListTest
with _1_basic

✓ .addValue => user : Should be able to add a new value. (144ms)
with _1_basic

✓ .getAverage => user : Should be able to get the average. (154ms)
with _2_roundDown

✓ .getAverage => user : Should be able to get the average. (161ms)
with _1_notFinalized

✓ .isFinalized => user : Should be able to test if it is finalized. (156ms)
with _2_finalized

✓ .isFinalized => user : Should be able to test if it is finalized. (168ms)
with _1_empty

✓ .min/max/sum/count => user : Should be able to get min/max/sum/count.
with _2_1Item

✓ .min/max/sum/count => user : Should be able to get min/max/sum/count. (86ms)
with _3_3Items

✓ .min/max/sum/count => user : Should be able to get min/max/sum/count. (175ms)
with _4_5Items

✓ .min/max/sum/count => user : Should be able to get min/max/sum/count. (144ms)
with _5_10Items

✓ .min/max/sum/count => user : Should be able to get min/max/sum/count. (422ms)
with _1_empty

✓ .isWithinTolerance => user : Should be able to get min/max/sum.
with _2_10min_10max_10avg_1tol

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (68ms)
with _3_10min_30max_20avg_10tol

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (159ms)
with _4_max_too_high

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (196ms)
with _5_min_too_low

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (153ms)
with _6_all_within_range

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (165ms)
with _7_max_too_high_close

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (203ms)
with _8_min_too_low_close

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (147ms)
with _9_all_within_range_0_tolerance

✓ .isWithinTolerance => user : Should be able to get min/max/sum. (153ms)

Contract: BaseConstructorTest
with _1_basic

✓ .new => user : Should be able to create a new instance. (44ms)

Contract: BaseInitializeTest
with _1_valid

✓ .initialize => user : Should (or not) be able to initialize the new instance. (158ms)
with _2_settings_empty

✓ .initialize => user : Should (or not) be able to initialize the new instance. MustFail . (165ms)
with _3_settings_not_contract

✓ .initialize => user : Should (or not) be able to initialize the new instance. MustFail . (170ms)

Contract: BaseWhenNotPausedTest
with _1_notPaused

✓ .whenNotPaused => user : Should (or not) be able to call function when it is/isnt paused. (39ms)
with _2_paused

✓ .whenNotPaused => user : Should (or not) be able to call function when it is/isnt paused. MustFail .
(83ms)

with _1_notPaused
✓ .whenLendingPoolNotPaused => user : Should (or not) be able to call function when a lending address

is/isnt paused. (43ms)
with _2_paused

✓ .whenLendingPoolNotPaused => user : Should (or not) be able to call function when a lending address
is/isnt paused. MustFail . (87ms)

Contract: BaseWhenPausedTest
with _1_notPaused

✓ .externalWhenPaused => user : Should (or not) be able to call function when it is/isnt paused.
MustFail . (73ms)

with _2_paused
✓ .externalWhenPaused => user : Should (or not) be able to call function when it is/isnt paused. (73ms)

with _1_notPaused
✓ .externalWhenNotPaused => user : Should (or not) be able to call function when a lending address

is/isnt paused. MustFail . (46ms)
with _2_paused

✓ .externalWhenNotPaused => user : Should (or not) be able to call function when a lending address
is/isnt paused. (71ms)

Contract: ConsensusModifiersTest
with _1_not_lenders

✓ .new => user : Should (or not) be able to call the function MustFail . (216ms)
with _2_lenders

✓ .new => user : Should (or not) be able to call the function (207ms)

Contract: ConsensusSignatureValidTest
with _1_hash1_signer_incorrect

✓ .new => user : Should return false if numbers are out of range (69ms)
with _2_hash1_signer_correct

✓ .new => user : Should return false if numbers are out of range (108ms)
with _3_hash1_r_s_swapped

✓ .new => user : Should return false if numbers are out of range (161ms)
with _4_hash2_signer_incorrect

✓ .new => user : Should return false if numbers are out of range (70ms)
with _5_hash2_signer_correct

✓ .new => user : Should return false if numbers are out of range (83ms)
with _6_hash2_send_wrong_hash

✓ .new => user : Should return false if numbers are out of range (84ms)
with _7_hash2_signer_not_signer_role

✓ .new => user : Should return false if numbers are out of range (38ms)

Contract: EstimateGasInterestConsensusProcessRequestTest
with _1_response

✓ .new => user : Should accept/not accept a nodes response (398ms)
with _2_responses

✓ .new => user : Should accept/not accept a nodes response (472ms)
with _3_responses

✓ .new => user : Should accept/not accept a nodes response (586ms)
with _4_responses

✓ .new => user : Should accept/not accept a nodes response (686ms)
with _5_responses

✓ .new => user : Should accept/not accept a nodes response (795ms)
with _6_responses

✓ .new => user : Should accept/not accept a nodes response (1204ms)
with _7_responses

✓ .new => user : Should accept/not accept a nodes response (1020ms)
with _8_responses

✓ .new => user : Should accept/not accept a nodes response (1082ms)
with _9_responses

✓ .new => user : Should accept/not accept a nodes response (1207ms)

Contract: EstimateGasLoanTermsConsensusProcessRequestTest
with _1_response

✓ .new => user : Should accept/not accept a nodes response (501ms)
with _2_responses

✓ .new => user : Should accept/not accept a nodes response (633ms)
with _3_response

✓ .new => user : Should accept/not accept a nodes response (782ms)
with _4_responses

✓ .new => user : Should accept/not accept a nodes response (928ms)
with _5_responses

✓ .new => user : Should accept/not accept a nodes response (1062ms)
with _6_responses

✓ .new => user : Should accept/not accept a nodes response (1263ms)
with _7_responses

✓ .new => user : Should accept/not accept a nodes response (1390ms)
with _8_responses

✓ .new => user : Should accept/not accept a nodes response (1534ms)
with _9_responses

✓ .new => user : Should accept/not accept a nodes response (1731ms)

Contract: EtherCollateralLoansCreateLoanWithTermsTest
with _1_no_msg_value

✓ .createLoanWithTerms => user : Should able (or not) to set loan terms. (303ms)
with _2_with_msg_value

✓ .createLoanWithTerms => user : Should able (or not) to set loan terms. (314ms)
with _3_msg_value_collateral_param_not_match_1

✓ .createLoanWithTerms => user : Should able (or not) to set loan terms. MustFail . (167ms)
with _4_msg_value_collateral_param_not_match_2

✓ .createLoanWithTerms => user : Should able (or not) to set loan terms. MustFail . (215ms)
with _5_msg_value_collateral_param_not_match_3

✓ .createLoanWithTerms => user : Should able (or not) to set loan terms. MustFail . (159ms)

Contract: EtherCollateralLoansDepositCollateralTest
with _1_borrower_mismatch

✓ .depositCollateral => user : Should able to deposit collateral. (173ms)
with _2_deposit_zero

✓ .depositCollateral => user : Should able to deposit collateral. (179ms)
with _3_deposit_more

✓ .depositCollateral => user : Should able to deposit collateral. (206ms)
with _4_incorrect_value

✓ .depositCollateral => user : Should able to deposit collateral. (186ms)

Contract: EtherCollateralLoansGetBorrowerLoansTest
with _1_valid_no_msg_value

✓ .getBorrowerLoans => user : Should able to get the borrower loan ids. (238ms)
with _2_valid_with_msg_value

✓ .getBorrowerLoans => user : Should able to get the borrower loan ids. (255ms)

Contract: EtherCollateralLoansLiquidateTest
with _1_loan_expired

✓ .liquidate => user : Should able to (or not) liquidate a loan. (494ms)
with _2_under_collateralised

✓ .liquidate => user : Should able to (or not) liquidate a loan. (446ms)
with _3_collateralised_and_loan_duration_expired

✓ .liquidate => user : Should able to (or not) liquidate a loan. (485ms)
with _4_doesnt_need_liquidating

✓ .liquidate => user : Should able to (or not) liquidate a loan. MustFail . (432ms)

Contract: EtherCollateralLoansRepayTest
with _1_to_pay_more_than_owed

✓ .repay => user : Should able to repay your loan. (303ms)
with _2_to_pay_zero

✓ .repay => user : Should able to repay your loan. (236ms)
with _3_to_less_than_owed

✓ .repay => user : Should able to repay your loan. (288ms)
with _4_to_pay_exact_owed

✓ .repay => user : Should able to repay your loan. (300ms)

Contract: EtherCollateralLoansTakeOutLoanTest
with _1_max_loan_exceeded

✓ .takeOutLoan => user : Should able to take out a loan. (224ms)
with _2_loan_terms_expired

✓ .takeOutLoan => user : Should able to take out a loan. (241ms)
with _3_collateral_deposited_recently

✓ .takeOutLoan => user : Should able to take out a loan. (232ms)
with _4_more_collateral_needed

✓ .takeOutLoan => user : Should able to take out a loan. (337ms)
with _5_successful_loan

✓ .takeOutLoan => user : Should able to take out a loan. (328ms)
with _6_with_recipient

✓ .takeOutLoan => user : Should able to take out a loan. (330ms)

Contract: EtherCollateralLoansWithdrawCollateralTest
with _1_non_borrower

✓ .withdrawCollateral => user : Should able to withdraw collateral. (313ms)
with _2_withdraw_zero

✓ .withdrawCollateral => user : Should able to withdraw collateral. (406ms)
with _3_more_than_allowed

✓ .withdrawCollateral => user : Should able to withdraw collateral. (397ms)
with _4_less_than_allowed

✓ .withdrawCollateral => user : Should able to withdraw collateral. (402ms)
with _5_none_allowed

✓ .withdrawCollateral => user : Should able to withdraw collateral. (363ms)

Contract: InitializeModifiersTest
with _1_notInitialized

✓ .isNotInitialized => user : Should (or not) be able to create a new instance. (39ms)
with _2_initialized

✓ .isNotInitialized => user : Should (or not) be able to create a new instance. MustFail . (81ms)
with _1_initialized

✓ .isInitialized => user : Should (or not) be able to create a new instance. (81ms)
with _2_notInitialized

✓ .isInitialized => user : Should (or not) be able to create a new instance. MustFail . (44ms)

Contract: InterestConsensus hashInterestRequest and hashReponse
with _1_first_test_hashInterestRequest

✓ .new => user : Should correctly calculate the hash for a request (62ms)
with _2_first_test_hashInterestRequest

✓ .new => user : Should correctly calculate the hash for a request (63ms)
with _3_second_test_hashInterestRequest

✓ .new => user : Should correctly calculate the hash for a request (63ms)
with _1_first_test_hashInterestResponse

✓ .new => user : Should correctly calculate the hash for a response (60ms)
with _2_first_test_hashInterestResponse

✓ .new => user : Should correctly calculate the hash for a response (66ms)
with _3_second_test_hashInterestResponse

✓ .new => user : Should correctly calculate the hash for a response (67ms)

Contract: InterestConsensusInitializeTest
with _1_no_settings

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (258ms)
with _2_no_lenders

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (274ms)
with _3_all_provided

✓ .new => user : Should (or not) be able to create a new instance. (235ms)

Contract: InterestConsensusProcessRequestTest
with _1_insufficient_responses

✓ .new => user : Should accept/not accept a nodes response (381ms)
with _2_one_response_successful

✓ .new => user : Should accept/not accept a nodes response (414ms)
with _3_responses_just_over_tolerance

✓ .new => user : Should accept/not accept a nodes response (762ms)
with _4_responses_just_within_tolerance

✓ .new => user : Should accept/not accept a nodes response (505ms)
with _5_zero_tolerance

✓ .new => user : Should accept/not accept a nodes response (440ms)
with _6_two_responses_same_signer

✓ .new => user : Should accept/not accept a nodes response (579ms)
with _7_expired_response

✓ .new => user : Should accept/not accept a nodes response (568ms)
with _8_responses_invalid_response_chainid

✓ .new => user : Should accept/not accept a nodes response (622ms)

Contract: InterestConsensusProcessResponseTest
with _1_signer_already_submitted

✓ .new => user : Should accept/not accept a nodes response (479ms)
with _2_signer_nonce_taken

✓ .new => user : Should accept/not accept a nodes response (521ms)
with _3_response_expired

✓ .new => user : Should accept/not accept a nodes response (500ms)
with _4_signature_invalid

✓ .new => user : Should accept/not accept a nodes response (422ms)
with _5_first_valid_submission

✓ .new => user : Should accept/not accept a nodes response (500ms)
with _6_later_valid_submission

✓ .new => user : Should accept/not accept a nodes response (506ms)
with _7_first_valid_submission_ropsten

✓ .new => user : Should accept/not accept a nodes response (500ms)

Contract: LendersInitializeTest
with _1_basic

✓ .new => user : Should (or not) be able to create a new instance. (50ms)
with _2_notzTokenInstance

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (56ms)
with _3_notLendingPoolInstance

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (51ms)
with _4_notConsensusInstance

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (53ms)
with _5_notzTokenInstance_notLendingPoolInstance

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (69ms)
with _6_notSettingsInstance

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (57ms)

Contract: LendersModifiersTest
with _1_zTokenSender

✓ .isZToken => user : Should able (or not) to call function with modifier isZToken. (223ms)
with _2_lendingPoolSender

✓ .isZToken => user : Should able (or not) to call function with modifier isZToken. MustFail . (238ms)
with _3_consensusSender

✓ .isZToken => user : Should able (or not) to call function with modifier isZToken. MustFail . (250ms)
with _4_notValidSender

✓ .isZToken => user : Should able (or not) to call function with modifier isZToken. MustFail . (221ms)
with _1_zTokenSender

✓ .isLendingPool => user : Should able (or not) to call function with modifier isLendingPool. MustFail .
(232ms)

with _2_lendingPoolSender
✓ .isLendingPool => user : Should able (or not) to call function with modifier isLendingPool. (221ms)

with _3_consensusSender
✓ .isLendingPool => user : Should able (or not) to call function with modifier isLendingPool. MustFail .

(236ms)
with _4_notValidSender

✓ .isLendingPool => user : Should able (or not) to call function with modifier isLendingPool. MustFail .
(238ms)

with _1_validAddress
✓ .isValid => user : Should able (or not) to call function with modifier isValid. (229ms)

with _2_invalidAddress
✓ .isValid => user : Should able (or not) to call function with modifier isValid. MustFail . (240ms)

Contract: LendersSetAccruedInterestTest
with _1_gap_in_accrual

✓ .setAccruedInterest => user : Should able to set accrued interest. (187ms)
with _2_invalid_interval

✓ .setAccruedInterest => user : Should able to set accrued interest. (187ms)
with _3_invalid_request

✓ .setAccruedInterest => user : Should able to set accrued interest. (254ms)
with _4_valid_request

✓ .setAccruedInterest => user : Should able to set accrued interest. (214ms)

Contract: LendersWithdrawInterestTest
with _1_0Available_10Requested

✓ .withdrawInterest => user : Should able to withdraw interest. (131ms)
with _2_50Available_10Requested

✓ .withdrawInterest => user : Should able to withdraw interest. (144ms)
with _3_50Available_100Requested

✓ .withdrawInterest => user : Should able to withdraw interest. (131ms)
with _5_50Available_0Requested

✓ .withdrawInterest => user : Should able to withdraw interest. (144ms)
with _6_50Available_0Requested_noPermissions

✓ .withdrawInterest => user : Should able to withdraw interest. (118ms)

Contract: LendingPoolCreateLoanTest
with _1_basic

✓ .createLoan => user : Should able (or not) to create loan. (163ms)
with _2_notLoanSender

✓ .createLoan => user : Should able (or not) to create loan. MustFail . (137ms)
with _3_transferFail

✓ .createLoan => user : Should able (or not) to create loan. MustFail . (285ms)
with _4_compoundFails

✓ .createLoan => user : Should able (or not) to create loan. MustFail . (193ms)

Contract: LendingPoolDepositTest
with _1_basic

✓ .deposit => user : Should able (or not) to deposit DAIs. (258ms)
with _2_notTransferFromEnoughBalance

✓ .deposit => user : Should able (or not) to deposit DAIs. MustFail . (272ms)
with _3_notDepositIntoCompound

✓ .deposit => user : Should able (or not) to deposit DAIs. MustFail . (313ms)
with _4_notMint

✓ .deposit => user : Should able (or not) to deposit DAIs. MustFail . (349ms)

Contract: LendingPoolInitializeTest
with _1_basic

✓ .initialize => user : Should (or not) be able to create a new instance. (118ms)
with _2_notZdai

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (111ms)
with _3_notDai

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (111ms)
with _4_notLenderInfo

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (121ms)
with _5_notLoanInfo

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (123ms)
with _6_notCToken

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (118ms)
with _7_notZdai_notLoanInfo

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (114ms)
with _8_notDai_notLenderInfo

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (107ms)
with _9_notSettings

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (125ms)

Contract: LendingPoolLiquidationPaymentTest
with _1_basic

✓ .liquidationPayment => user : Should able (or not) to liquidate payment. (186ms)
with _2_transferFromFail

✓ .liquidationPayment => user : Should able (or not) to liquidate payment. MustFail . (211ms)
with _3_notLoansSender

✓ .liquidationPayment => user : Should able (or not) to liquidate payment. MustFail . (135ms)
with _4_compoundFail

✓ .liquidationPayment => user : Should able (or not) to liquidate payment. MustFail . (249ms)

Contract: LendingPoolRepayTest
with _1_basic

✓ .repay => user : Should able (or not) to repay loan. (209ms)
with _2_notLoan

✓ .repay => user : Should able (or not) to repay loan. MustFail . (140ms)
with _3_transferFail

✓ .repay => user : Should able (or not) to repay loan. MustFail . (195ms)
with _4_compoundFail

✓ .repay => user : Should able (or not) to repay loan. MustFail . (266ms)

Contract: LendingPoolWithdrawInterestTest
with _1_basic

✓ .withdrawInterest => user : Should able (or not) to withdraw the interest. (319ms)
with _2_basic

✓ .withdrawInterest => user : Should able (or not) to withdraw the interest. MustFail . (317ms)
with _3_basic

✓ .withdrawInterest => user : Should able (or not) to withdraw the interest. (321ms)
with _4_transferFail

✓ .withdrawInterest => user : Should able (or not) to withdraw the interest. MustFail . (398ms)
with _5_notEnoughBalance

✓ .withdrawInterest => user : Should able (or not) to withdraw the interest. MustFail . (353ms)
with _6_notAddressEqual

✓ .withdrawInterest => user : Should able (or not) to withdraw the interest. MustFail . (306ms)

Contract: LendingPoolWithdrawTest
with _1_basic

✓ .withdraw => user : Should able (or not) to withdraw DAIs. (494ms)
with _2_transferFail

✓ .withdraw => user : Should able (or not) to withdraw DAIs. MustFail . (562ms)
with _3_compoundFail

✓ .withdraw => user : Should able (or not) to withdraw DAIs. MustFail . (574ms)
with _1_basic

✓ .withdraw => user : Should able (or not) to withdraw DAIs. (564ms)
with _2_recipientNotEnoughZDaiBalance

✓ .withdraw => user : Should able (or not) to withdraw DAIs. MustFail . (588ms)
with _3_recipientNotZDaiBalance

✓ .withdraw => user : Should able (or not) to withdraw DAIs. MustFail . (578ms)

Contract: LoanTermsConsensus hashRequest and hashReponse
with _1_mainnet_first_test_hashRequest

✓ .hashRequest => user : Should correctly calculate the hash for a request (60ms)
with _2_ropsten_test_hashRequest

✓ .hashRequest => user : Should correctly calculate the hash for a request (60ms)
with _3_second_test_hashRequest

✓ .hashRequest => user : Should correctly calculate the hash for a request (59ms)
with _1_first_test_hashResponse

✓ .hashResponse => user : Should correctly calculate the hash for a response (60ms)
with _2_second_test_hashResponse

✓ .hashResponse => user : Should correctly calculate the hash for a response (61ms)

Contract: LoanTermsConsensusProcessRequestTest
with _1_insufficient_responses

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (388ms)
with _2_one_response_successful

✓ .processRequest => user : Should accept/not accept node request/responses (485ms)
with _3_responses_just_over_tolerance

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (918ms)
with _4_responses_just_within_tolerance

✓ .processRequest => user : Should accept/not accept node request/responses (654ms)
with _5_zero_tolerance

✓ .processRequest => user : Should accept/not accept node request/responses (528ms)
with _6_two_responses_same_signer

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (738ms)
with _7_expired_response

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (901ms)
with _8_signer_nonce_taken

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (608ms)
with _9_responses_invalid_sig_chainid

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (774ms)
with _10_borrower_nonce_taken

✓ .processRequest => user : Should accept/not accept node request/responses MustFail . (445ms)

Contract: LoanTermsConsensusProcessResponseTest
with _1_signer_already_submitted

✓ .new => user : Should accept/not accept a nodes response (587ms)
with _2_signer_nonce_taken

✓ .new => user : Should accept/not accept a nodes response (592ms)
with _3_response_expired

✓ .new => user : Should accept/not accept a nodes response (578ms)
with _4_signature_invalid

✓ .new => user : Should accept/not accept a nodes response (554ms)
with _5_first_valid_submission

✓ .new => user : Should accept/not accept a nodes response (478ms)
with _6_later_valid_submission

✓ .new => user : Should accept/not accept a nodes response (710ms)

Contract: LoansBaseConvertTokenToWeiTest
with _1_usdc_price

✓ .convertTokenToWei => user : Should able to convert wei to token. (149ms)
with _1_dai_price

✓ .convertTokenToWei => user : Should able to convert wei to token. (152ms)
with _1_btc_price

✓ .convertTokenToWei => user : Should able to convert wei to token. (161ms)
with _1_mkr_price

✓ .convertTokenToWei => user : Should able to convert wei to token. (161ms)

Contract: LoansBaseConvertWeiToTokenTest
with _1_usdc_price

✓ .convertWeiToToken => user : Should able to convert wei to token. (354ms)
with _1_dai_price

✓ .convertWeiToToken => user : Should able to convert wei to token. (145ms)
with _1_btc_price

✓ .convertWeiToToken => user : Should able to convert wei to token. (157ms)
with _1_mkr_price

✓ .convertWeiToToken => user : Should able to convert wei to token. (157ms)

Contract: LoansBaseGetCollateralInfoTest
with _1_link_usd_response_8_token_18_inverse_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (629ms)
with _2_link_usd_response_8_token_18_inverse_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (715ms)
with _3_link_usd_response_8_token_18_inverse_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (751ms)
with _4_usdc_eth_response_18_token_6_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (519ms)
with _5_usdc_eth_response_18_token_6_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (673ms)
with _6_usdc_eth_response_18_token_6_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (634ms)
with _7_dai_eth_response_18_token_18_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (515ms)
with _8_usdc_slink_response_12_token_6_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (622ms)
with _9_usdc_slink_response_12_token_6_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (650ms)
with _10_usdc_slink_response_12_token_6_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (967ms)
with _11_usdc_tlink_response_12_token_6_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (620ms)
with _12_usdc_tlink_response_12_token_6_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (762ms)
with _13_usdc_tlink_response_12_token_6_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (804ms)
with _14_usdc_tlink_response_12_token_10_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (661ms)
with _15_usdc_tlink_response_12_token_11_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (626ms)
with _16_usdc_tlink_response_12_token_11_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (621ms)
with _17_usdc_tlink_response_12_token_11_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (739ms)
with _18_usdc_tlink_response_12_token_11_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (767ms)
with _19_usdc_tlink_response_8_token_10_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (639ms)
with _20_usdc_tlink_response_8_token_10_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (726ms)
with _21_usdc_tlink_response_8_token_10_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (824ms)
with _22_usdc_tlink_response_8_token_10_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (638ms)
with _23_usdc_tlink_response_8_token_10_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (731ms)
with _24_usdc_tlink_response_8_token_10_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (765ms)
with _25_usdc_tlink_response_8_token_10_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (875ms)
with _26_usdc_tlink_response_8_token_10_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (747ms)
with _27_usdc_tlink_response_8_token_10_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (799ms)
with _28_usdc_tlink_response_8_token_10_repay_0

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (646ms)
with _29_usdc_tlink_response_8_token_10_repay_50

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (725ms)
with _30_usdc_tlink_response_8_token_10_repay_100

✓ .getCollateralInfo => user : Should able to get collateral info from a loan. (778ms)

Contract: LoansBaseLendingTokenTest
with _1_basic

✓ .lendingToken => user : Should able to get the lending token address. (74ms)
with _2_empty_address

✓ .lendingToken => user : Should able to get the lending token address. (78ms)

Contract: LoansBaseModifiersTest
with _1_loanNonExistent

✓ .loanActive(loanID) => user : Should able (or not) to call function with modifier loanActive. MustFail
. (478ms)

with _2_loanTermsSet
✓ .loanActive(loanID) => user : Should able (or not) to call function with modifier loanActive. MustFail

. (396ms)
with _3_loanActive

✓ .loanActive(loanID) => user : Should able (or not) to call function with modifier loanActive. (389ms)
with _4_loanClosed

✓ .loanActive(loanID) => user : Should able (or not) to call function with modifier loanActive. MustFail
. (404ms)

with _1_loanNonExistent
✓ .loanTermsSet(loanID) => user : Should able (or not) to call function with modifier loanActive.

MustFail . (397ms)
with _2_loanTermsSet

✓ .loanTermsSet(loanID) => user : Should able (or not) to call function with modifier loanActive.
(399ms)

with _3_loanActive
✓ .loanTermsSet(loanID) => user : Should able (or not) to call function with modifier loanActive.

MustFail . (550ms)
with _4_loanClosed

✓ .loanTermsSet(loanID) => user : Should able (or not) to call function with modifier loanActive.
MustFail . (456ms)

with _1_loanNonExistent
✓ .loanActiveOrSet(loanID) => user : Should able (or not) to call function with modifier loanActive.

MustFail . (424ms)
with _2_loanTermsSet

✓ .loanActiveOrSet(loanID) => user : Should able (or not) to call function with modifier loanActive.
(398ms)

with _3_loanActive
✓ .loanActiveOrSet(loanID) => user : Should able (or not) to call function with modifier loanActive.

(408ms)
with _4_loanClosed

✓ .loanActiveOrSet(loanID) => user : Should able (or not) to call function with modifier loanActive.
MustFail . (407ms)

with _1_basic
✓ .isBorrower => user : Should able (or not) to call function with modifier isBorrower. (368ms)

with _2_not_borrower
✓ .isBorrower => user : Should able (or not) to call function with modifier isBorrower. MustFail .

(362ms)

Contract: LoansBasePayLoanTest
with _1_less_than_principal

✓ .payLoan => user : Should able to pay loan correctly. (115ms)
with _2_more_than_principal

✓ .payLoan => user : Should able to pay loan correctly. (112ms)
with _3_no_principal_left

✓ .payLoan => user : Should able to pay loan correctly. (107ms)
with _4_full_amount

✓ .payLoan => user : Should able to pay loan correctly. (116ms)

Contract: OwnerSignersRoleTest
with _1_basic

✓ .addSigner => user : Should be able (or not) to add a new signer. (41ms)
with _2_empty_address

✓ .addSigner => user : Should be able (or not) to add a new signer. MustFail . (49ms)
with _3_not_owner

✓ .addSigner => user : Should be able (or not) to add a new signer. MustFail . (54ms)
with _4_signer_add_new_signer

✓ .addSigner => user : Should be able (or not) to add a new signer. MustFail . (264ms)
with _1_basic

✓ .removeSigner => user : Should be able (or not) to remove a new signer. (144ms)
with _2_not_exist

✓ .removeSigner => user : Should be able (or not) to remove a new signer. MustFail . (54ms)
with _3_empty_address

✓ .removeSigner => user : Should be able (or not) to remove a new signer. MustFail . (140ms)
with _4_not_owner

✓ .removeSigner => user : Should be able (or not) to remove a new signer. MustFail . (132ms)
with _5_signer_remove_signer

✓ .removeSigner => user : Should be able (or not) to remove a new signer. MustFail . (164ms)
with _1_isSigner

✓ .isSigner => user : Should be able (or not) to remove a new signer. (98ms)
with _2_isNotSigner

✓ .isSigner => user : Should be able (or not) to remove a new signer. (150ms)

Contract: SettingsConstructorTest
with _1_basic

✓ .new => user : Should (or not) be able to create a new instance. (88ms)
with _2_not_required_submissions

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (79ms)
with _3_not_response_expiry_length

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (82ms)
with _4_not_safety_interval

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (84ms)
with _5_not_terms_expiry

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (80ms)
with _6_not_eth_price

✓ .new => user : Should (or not) be able to create a new instance. MustFail . (83ms)

Contract: SettingsPauseLendingPoolTest
with _1_basic

✓ .pauseLendingPool => user : Should (or not) be able to pause a lending pool. (54ms)
with _2_notOwner

✓ .pauseLendingPool => user : Should (or not) be able to pause a lending pool. MustFail . (41ms)
with _3_emptyLendingPool

✓ .pauseLendingPool => user : Should (or not) be able to pause a lending pool. MustFail . (41ms)
with _1_basic

✓ .pauseLendingPool => user : Should NOT be able to pause a lending pool twice. MustFail . (79ms)

Contract: SettingsSetSettingTest
with _1_basic

✓ .setRequiredSubmissions => user : Should (or not) be able to set a new required submissions value.
(53ms)

with _2_zero
✓ .setRequiredSubmissions => user : Should (or not) be able to set a new required submissions value.

MustFail . (54ms)
with _3_new_value_required

✓ .setRequiredSubmissions => user : Should (or not) be able to set a new required submissions value.
MustFail . (51ms)

with _1_basic
✓ .setMaximumTolerance => user : Should (or not) be able to set a new maximum tolerance value. (50ms)

with _2_zero
✓ .setMaximumTolerance => user : Should (or not) be able to set a new maximum tolerance value. (50ms)

with _3_new_value_required
✓ .setMaximumTolerance => user : Should (or not) be able to set a new maximum tolerance value. MustFail

. (59ms)
with _4_basic_2

✓ .setMaximumTolerance => user : Should (or not) be able to set a new maximum tolerance value. (55ms)
with _5_max_exceeded

✓ .setMaximumTolerance => user : Should (or not) be able to set a new maximum tolerance value. MustFail
. (141ms)

with _6_max_limit
✓ .setMaximumTolerance => user : Should (or not) be able to set a new maximum tolerance value. (55ms)

with _1_basic
✓ .setResponseExpiryLength => user : Should (or not) be able to set a new response expiry length value.

(54ms)
with _2_zero

✓ .setResponseExpiryLength => user : Should (or not) be able to set a new response expiry length value.
MustFail . (56ms)

with _3_new_value_required
✓ .setResponseExpiryLength => user : Should (or not) be able to set a new response expiry length value.

MustFail . (59ms)
with _1_basic

✓ .setSafetyInterval => user : Should (or not) be able to set a new safety interval value. (54ms)
with _2_zero

✓ .setSafetyInterval => user : Should (or not) be able to set a new safety interval value. MustFail .
(56ms)

with _3_new_value_required
✓ .setSafetyInterval => user : Should (or not) be able to set a new safety interval value. MustFail .

(55ms)
with _1_basic

✓ .setTermsExpiryTime => user : Should (or not) be able to set a new terms expiry time value. (53ms)
with _2_zero

✓ .setTermsExpiryTime => user : Should (or not) be able to set a new terms expiry time value. MustFail .
(54ms)

with _3_new_value_required
✓ .setTermsExpiryTime => user : Should (or not) be able to set a new terms expiry time value. MustFail .

(60ms)
with _1_basic

✓ .setLiquidateEthPrice => user : Should (or not) be able to set a new liquidate ETH price value.
(55ms)

with _2_zero
✓ .setLiquidateEthPrice => user : Should (or not) be able to set a new liquidate ETH price value.

MustFail . (58ms)
with _3_new_value_required

✓ .setLiquidateEthPrice => user : Should (or not) be able to set a new liquidate ETH price value.
MustFail . (64ms)

Contract: SettingsUnpauseLendingPoolTest
with _1_basic

✓ .unpauseLendingPool => user : Should (or not) be able to pause a lending pool. (87ms)
with _2_notOwner

✓ .unpauseLendingPool => user : Should (or not) be able to pause a lending pool. MustFail . (74ms)
with _3_emptyLendingPool

✓ .unpauseLendingPool => user : Should (or not) be able to pause a lending pool. MustFail . (67ms)
with _1_notPausedTwice

✓ .unpauseLendingPool => user : Should NOT be able to unpause a lending pool twice. MustFail . (121ms)

Contract: TokenCollateralLoansCreateLoanWithTermsTest
with _1_without_collateral

✓ .createLoanWithTerms => user : Should able to set loan terms. (389ms)
with _2_basic_collateral

✓ .createLoanWithTerms => user : Should able to set loan terms. (422ms)
with _3_not_enough_balance

✓ .createLoanWithTerms => user : Should able to set loan terms. MustFail . (432ms)
with _4_not_enough_allowance

✓ .createLoanWithTerms => user : Should able to set loan terms. MustFail . (2464ms)

Contract: TokenCollateralLoansDepositCollateralTest
with _1_deposit_basic

✓ .depositCollateral => user : Should able (or not) to deposit tokens as collateral. (491ms)
with _2_borrower_loan_mismatch

✓ .depositCollateral => user : Should able (or not) to deposit tokens as collateral. (408ms)
with _3_deposit_zero

✓ .depositCollateral => user : Should able (or not) to deposit tokens as collateral. (428ms)

with _4_deposit_more_value_not_zero
✓ .depositCollateral => user : Should able (or not) to deposit tokens as collateral. (360ms)

with _5_value_not_zero
✓ .depositCollateral => user : Should able (or not) to deposit tokens as collateral. (368ms)

with _1_deposit_basic
✓ .depositCollateral#2 => user : Should able (or not) to deposit tokens as collateral. (467ms)

with _2_not_enough_allowance
✓ .depositCollateral#2 => user : Should able (or not) to deposit tokens as collateral. (415ms)

with _3_transferFrom_failed
✓ .depositCollateral#2 => user : Should able (or not) to deposit tokens as collateral. (497ms)

Contract: TokenCollateralLoansInitializeTest
with _1_basic

✓ .initialize => user : Should (or not) be able to create a new instance. (169ms)
with _2_not_oracle

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (168ms)
with _3_not_lendingpool

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (169ms)
with _4_not_loanTerms

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (176ms)
with _5_not_settings

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (175ms)
with _6_not_collateralToken

✓ .initialize => user : Should (or not) be able to create a new instance. MustFail . (164ms)

Contract: TokenCollateralLoansRequireExpectedBalanceTest
with _1_valid_transferFrom

✓ .requireExpectedBalance => user : Should able to check balance after transferring/from. (76ms)
with _2_valid_transfer

✓ .requireExpectedBalance => user : Should able to check balance after transferring/from. (81ms)
with _3_invalid_transferFrom

✓ .requireExpectedBalance => user : Should able to check balance after transferring/from. MustFail .
(85ms)

with _4_invalid_transfer
✓ .requireExpectedBalance => user : Should able to check balance after transferring/from. MustFail .

(78ms)
with _5_overflow_transferFrom

✓ .requireExpectedBalance => user : Should able to check balance after transferring/from. MustFail .
(86ms)

with _6_invalid_transfer
✓ .requireExpectedBalance => user : Should able to check balance after transferring/from. MustFail .

(82ms)

Contract: TokenCollateralLoansWithdrawCollateralTest
with _1_more_than_allowed

✓ .withdrawCollateral => user : Should able to withdraw collateral (tokens). (595ms)
with _2_non_borrower

✓ .withdrawCollateral => user : Should able to withdraw collateral (tokens). MustFail . (452ms)
with _3_withdraw_zero

✓ .withdrawCollateral => user : Should able to withdraw collateral (tokens). MustFail . (513ms)
with _1_valid

✓ .withdrawCollateral#2 => user : Should able (or not) to withdraw collateral (tokens). (558ms)
with _2_not_enough_balance

✓ .withdrawCollateral#2 => user : Should able (or not) to withdraw collateral (tokens). (623ms)
with _3_transfer_fail

✓ .withdrawCollateral#2 => user : Should able (or not) to withdraw collateral (tokens). (654ms)

Contract: ChainlinkPairAggregatorConstructorTest
with _1_basic

✓ .new => user : Should (or not) able to create a new instance. (64ms)
with _2_emptyChainlink

✓ .new => user : Should (or not) able to create a new instance. MustFail . (61ms)
with _3_zeroResponseDecimals

✓ .new => user : Should (or not) able to create a new instance. (60ms)
with _4_zeroCollateralDecimals

✓ .new => user : Should (or not) able to create a new instance. (53ms)
with _5_zeroDecimals

✓ .new => user : Should (or not) able to create a new instance. (55ms)
with _6_big_diff

✓ .new => user : Should (or not) able to create a new instance. MustFail . (66ms)

Contract: ChainlinkPairAggregatorGetLatestAnswerTest
with _1_coll18_response18

✓ .getLatestAnswer => user : Should able to get the last price. (126ms)
with _2_coll18_response10

✓ .getLatestAnswer => user : Should able to get the last price. (124ms)
with _3_coll18_response18

✓ .getLatestAnswer => user : Should able to get the last price. (130ms)
with _4_coll10_response18

✓ .getLatestAnswer => user : Should able to get the last price. (128ms)

Contract: ChainlinkPairAggregatorGetLatestRoundTest
with _1_basic

✓ .getLatestRound => user : Should able to get the last round. (70ms)

Contract: ChainlinkPairAggregatorGetLatestTimestampTest
with _1_basic

✓ .getLatestTimestamp => user : Should able to get the last timestamp. (70ms)
with _2_now

✓ .getLatestTimestamp => user : Should able to get the last timestamp. (72ms)

Contract: ChainlinkPairAggregatorGetPreviousAnswerTest
with _1_basic

✓ .getPreviousAnswer => user : Should able (or not) to get the previous price. (182ms)
with _2_zeroDays

✓ .getPreviousAnswer => user : Should able (or not) to get the previous price. (126ms)
with _3_notHistory

✓ .getPreviousAnswer => user : Should able (or not) to get the previous price. MustFail . (120ms)

Contract: ChainlinkPairAggregatorGetPreviousTimestampTest

with _1_basic
✓ .getPreviousTimestamp => user : Should able (or not) to get the previous timestamp. (127ms)

with _2_zeroDays
✓ .getPreviousTimestamp => user : Should able (or not) to get the previous timestamp. (135ms)

with _2_notHistory
✓ .getPreviousTimestamp => user : Should able (or not) to get the previous timestamp. MustFail . (123ms)

Contract: InverseChainlinkPairAggregatorGetLatestAnswerTest
with _1_link_usd

✓ .getLatestAnswer => user : Should able to get the last price. (131ms)
with _2_usd_tokenB

✓ .getLatestAnswer => user : Should able to get the last price. (124ms)
with _3_usd_tokenB

✓ .getLatestAnswer => user : Should able to get the last price. (134ms)
with _4_usd_tokenC

✓ .getLatestAnswer => user : Should able to get the last price. (128ms)
with _5_usd_tokenD

✓ .getLatestAnswer => user : Should able to get the last price. (132ms)

Contract: InverseChainlinkPairAggregatorGetPreviousAnswerTest
with _1_link_usd

✓ .getPreviousAnswer => user : Should able (or not) to get a previous price. (269ms)
with _2_usd_tokenB

✓ .getPreviousAnswer => user : Should able (or not) to get a previous price. MustFail . (211ms)
with _3_usd_tokenB

✓ .getPreviousAnswer => user : Should able (or not) to get a previous price. MustFail . (164ms)
with _4_usd_tokenC

✓ .getPreviousAnswer => user : Should able (or not) to get a previous price. (177ms)

386 passing (5m)

Code Coverage

Test coverage appears to be very high as measured by the coverage tools. However, we have the following suggestions:

1. Adding coverage for the lines and in . The uncovered methods are , and therefore, it is important to ensure their

correctness.

96 100 LoansBase.sol external

2. Bringing the branch coverage of to by covering the "else" branch of at .LoanTermsConcensus 100% REQUEST_NONCE_TAKEN L43

3. Bringing the branch coverage of to by covering the "else" branch of at .EtherCollateralLoans 100% INCORRECT_ETH_AMOUNT L58

Additionally, we recommend adding tests that cover the edge cases, including access control logic ().QSP-1

Test coverage has been improved as of the commit .Update: dd7d2ac

File % Stmts % Branch % Funcs % Lines Uncovered Lines

base/ 100 100 100 100

Base.sol 100 100 100 100

Consensus.sol 100 100 100 100

EtherCollateralLoans.sol 100 100 100 100

Initializable.sol 100 100 100 100

InterestConsensus.sol 100 100 100 100

Lenders.sol 100 100 100 100

LendingPool.sol 100 100 100 100

LoanTermsConsensus.sol 100 100 100 100

LoansBase.sol 100 100 100 100

OwnerSignersRole.sol 100 100 100 100

Settings.sol 100 100 100 100

TokenCollateralLoans.sol 100 100 100 100

ZDai.sol 100 100 100 100

ZToken.sol 100 100 100 100

ZUSDC.sol 100 100 100 100

interfaces/ 100 100 100 100

InterestConsensusInterface.sol 100 100 100 100

LendersInterface.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines

LendingPoolInterface.sol 100 100 100 100

LoanTermsConsensusInterface.sol 100 100 100 100

LoansInterface.sol 100 100 100 100

PairAggregatorInterface.sol 100 100 100 100

SettingsInterface.sol 100 100 100 100

ZTokenInterface.sol 100 100 100 100

providers/chainlink/ 100 100 100 100

ChainlinkPairAggregator.sol 100 100 100 100

InverseChainlinkPairAggregator.sol 100 100 100 100

providers/compound/ 100 100 100 100

CErc20Interface.sol 100 100 100 100

util/ 100 100 100 100

AddressLib.sol 100 100 100 100

NumbersList.sol 100 100 100 100

ZeroCollateralCommon.sol 100 100 100 100

All files 100 100 100 100

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the
security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential
vulnerability that was not within the scope of the review.

Contracts

adbfaf8714e4372a20e8460a48b8d10b48c120842145a4cdc869e93157528e02 ./contracts/Migrations.sol

9f70cabd5bc33ea4b600fba0fe60f622bd8af6a647a05eba24789c1219b5db36 ./contracts/interfaces/ZTokenInterface.sol

a98b382279b70c1e3d6a4cd9800ee908031fe7f34574f5e86b16a8a65bfbe103 ./contracts/interfaces/LoansInterface.sol

3a142240d99a184ce553827c3f0aab133081f5886f18f36d0df6238735dc949a
./contracts/interfaces/PairAggregatorInterface.sol

4ec1f07b8ceb14a581e0311fcf56cc4d4454341515a4360b9b48897a9defa7e3
./contracts/interfaces/InterestConsensusInterface.sol

77c84736526497e371674d4f5ed878b029ed58e60a42207e99783dfc65854941
./contracts/interfaces/LoanTermsConsensusInterface.sol

8da3b3de2b6d093210804f8153d1caa3b11053b68980a3a0273caf7381fd54ed ./contracts/interfaces/SettingsInterface.sol

0ce0b3ac35f10f1312f8748ff7f416c7c6e7f5dc5e0e83ae61a6255ed869d8db ./contracts/interfaces/LendersInterface.sol

dcf0dd5cfedbe036f63beb0adbb26b89c3f741e72c14f5c874829209bd9f07c6 ./contracts/interfaces/LendingPoolInterface.sol

21bd49f28399ffd05ccef339c8c0765433f483813a1d3179c2fb38cb8876537b ./contracts/base/Initializable.sol

b10b6c7d93b4bce9a2c36c357b4473134a2865b0f0445337bd2d43d43c5768c8 ./contracts/base/Settings.sol

d56a6a878f933d7c5cdb7b62c4a556e46c99777376a1e412886947882b62eb2a ./contracts/base/LoansBase.sol

37c1c6d4ee51a0f2ae8e1b5abd90b8ac970a1ebf6b9eeb6b806ecc7ceb0d4c94 ./contracts/base/LendingPool.sol

3c10e8e25d51eb3a8660a2cce1eb7688272448d3b8aa86c3f9d2dca9ea45ad15 ./contracts/base/ZUSDC.sol

b1af44b97b5d84f39fd82c3ce99dcac3168d752cc2be2657f012af212f403a83 ./contracts/base/Lenders.sol

073d0a38252d425892c1c59cd16748e74467322e3ec0556e1574628327ef0c13 ./contracts/base/OwnerSignersRole.sol

35782474a7c94b67327e65e2e8b8767fe118dc34002b7896b4b6092caa6d18b9 ./contracts/base/ZToken.sol

d1e9e5900ff7af5a8d3ab8965cad6041726d613e026027d19914eb4f30c98df7 ./contracts/base/LoanTermsConsensus.sol

9539d466e6280a02dd6990c7efb0f91ac8e7acb7ab0de458e03a2c2770a805a2 ./contracts/base/ZDai.sol

e43e5901d304aaef68eff6468d378deff66c76917c90ade6b67f4b0bee2ee0ba ./contracts/base/Base.sol

41c1986657880e490ee6d5afc6e50865d144cc1777e136eb20e5b5d0f7bf3819 ./contracts/base/TokenCollateralLoans.sol

704e2f3b1e0850d7665eed4f1bd4830905b5ef72010cd2f8ff0aec7a45b34c37 ./contracts/base/InterestConsensus.sol

2c50c0dadde447c439f91455ce821d81d842787c3e555d29dce23e4dcca138d8 ./contracts/base/EtherCollateralLoans.sol

abaa99cb3345188f3d1ca76cb2eda8d71bfb4c22e68789cad7116e4abb1de5c2 ./contracts/base/Consensus.sol

923bc84f8c33f194828974829e515c99b6387ab2b82e3e8e1b6f0a65c5766b57 ./contracts/mock/base/BaseMock.sol

86c7a854974a2e6120dc9bece4871d8d4c87ef10622ac62171c8492b88c04399 ./contracts/mock/base/LendersMock.sol

1f03bb3e2f4c965ed02d72be69045f42793c6c4ab18fadcc16317975d9432804
./contracts/mock/base/InitializableModifiersMock.sol

00c185eedbf6fb3bfbc252482fac58eb267df04ae07a4e16535bf10a6cb59e08 ./contracts/mock/base/LoansBaseMock.sol

0b549d608754113bb3b790a15b5c5e5e32550669a2a384a7f93c96d8f0aafcbc
./contracts/mock/base/LoanTermsConsensusMock.sol

6c9b2db8addbc3af2c3236b1232efb6d2677e726999a1a93a1fffd5321797559 ./contracts/mock/base/InterestConsensusMock.sol

e04f5bdfd11cf75eb209f2f4acce52f5febc336091ae911a7a5f83b9d63531fe
./contracts/mock/base/ConsensusModifiersMock.sol

cb4f0ad722267861ced6cf3b65928e59525cec402b0dd85b972764930b75610f
./contracts/mock/base/EtherCollateralLoansMock.sol

67d3e81521221f9dabc23f81e42edc97ff9946fbe5e854abd923cc2ce3368354
./contracts/mock/base/LoansBaseModifiersMock.sol

4c8d49a413d7e71bb85451f18244d7f728b161c0a9bf22193340c3275b1359e5
./contracts/mock/base/TokenCollateralLoansMock.sol

45906d964fcb2f24543ec77c6607692c97d1b4abbaf2ac49e69fdfdfad7eb4f9 ./contracts/mock/base/ConsensusMock.sol

b992ecd8fe653513aa830657dace8f8dd9108a6d73739825171ba2d2b6f5a5b1 ./contracts/mock/base/LendingPoolMock.sol

36fa0e71f982f46abadabac77112cdd072ec1016c0258bdf9ee7fd89babbf96e ./contracts/mock/base/LendersModifiersMock.sol

2a3d4817f9bae7f701fa6291a798b2f82ec4d88a18b0e3a92f2622c2e7e86910
./contracts/mock/providers/compound/CUSDCMock.sol

26b130c296effc659bafa5652930405515c59887dc193f19e9ee97c1df2311f7
./contracts/mock/providers/compound/CERC20Mock.sol

47ac176fb886a1411520faf3aa1884167e06812e1c5da2f9bf5ea23df5df1ecf
./contracts/mock/providers/compound/CDAIMock.sol

05d8bab01f6e97d9cf8c83bf372b8fcb1ff8ab3dff060438568b7571f89f1037
./contracts/mock/providers/chainlink/PairAggregatorMock.sol

e1357b0c45e3a9c0d66ad52d9b9956637b4f8db509cb39fa3fae20e3be4b5b7c ./contracts/mock/util/AddressLibMock.sol

6d625c1418459d7409d1412cf13fb5a4e458e752d42e8ce28ebf2f42f89bdd47 ./contracts/mock/util/NumbersListMock.sol

1b167ceed84907baf3a6c7c820fb0604efda92c6540a51597dd478674e021a1f ./contracts/mock/util/Mock.sol

bc14e1c00b13e5e2482bfdaf6e1845a5587949bd6fe16cfe91212ee66cbc62aa ./contracts/mock/token/LINKMock.sol

62097eed10fec9062a6e7498709027f864ebcde885876136410c4dfe8121b130 ./contracts/mock/token/ERC20Mock.sol

54c8bb35727984a6ee93c045f4c3432994caa749a88e13bab68912bb82b9e9eb ./contracts/mock/token/USDCMock.sol

6ba5dcc4037e85887f5cffffbb1659e4ecd9fbd1de865b924d64cc3371a655c1 ./contracts/mock/token/DAIMock.sol

ed680d1b6ef57dbc58bf73dcdca1542c59b0bf68ffcfdee10bc5462aca20460a
./contracts/providers/openzeppelin/SignedSafeMath.sol

a20f393c83bdf50cb774dcab411cdc558a20323bf92ccfe8e920b850da626bac
./contracts/providers/compound/CErc20Interface.sol

1713e9e1ca65a86ab6fbc41708f57cfb34b4e207d7e8d7c15869ea6ba4282b24
./contracts/providers/chainlink/ChainlinkPairAggregator.sol

170aa5a0fd5401c6b64e69666ef0d42618c69449b26a4b99e3ac2d432e1d99da
./contracts/providers/chainlink/InverseChainlinkPairAggregator.sol

54d15dc7699e0947f7030dbad1c236ee0d1483760050f4e43e6307d3b7dba8c1 ./contracts/util/NumbersList.sol

0d139145bafc1efa7f6a200bc90884c7b0f3002e567e88cbbd3e58cc6cc476b7 ./contracts/util/AddressLib.sol

fb39b324a3eff012f5d548de7bc016ec0a1e420d045df5b4d8827a56f7386c32 ./contracts/util/ZeroCollateralCommon.sol

Tests

ba632aa94ecf94ffa6705ecd757a9685e8594726f8eb0fee055c4ed26516a0ca ./test/ERC20TransferTest.js

da83a3c5720334204634b8fad0817f59eb84a4383c09c4d3af961daf4d9d08da ./test/base/LendersModifiersTest.js

ded2b00396c4de37a93a691956065d38c7e90a69c03bef2ea1b63bed72831dba ./test/base/InterestConsensusHashesTest.js

ecb051e372bb3012f0d2bee124083c8db8cec2ace206641fb2f7dbdb133ed16d ./test/base/LendingPoolRepayTest.js

1cee3c3dfcbb294dda21b6386fa810b2a2f63384348abccde4f940c9cf02ffad ./test/base/LoansBaseGetCollateralInfoTest.js

7c5e13f7a0fa876b65961cc42e382e2214df846fb38dcd5fd5bdce3e3c1c3b12
./test/base/EtherCollateralLoansCreateLoanWithTermsTest.js

befd460a75a0729ff07814ee5acd2d6d5d2f525533612b72f6b335f92c6690a6 ./test/base/ConsensusSignatureValidTest.js

65ed95826b813cbb30d3e11f9f4da065b771d7349c394f956373b3128980c398

./test/base/TokenCollateralLoansInitializeTest.js

f9cb458ba04edf8b745f2a65f7b954a0d575abe084375330b5effb14c85d4362
./test/base/EtherCollateralLoansLiquidateTest.js

c8f5f03e58c859bbf5c11aaab2ba0a3a6cf0ecc07753371883c0fae6aec21ad8 ./test/base/ConsensusModifiersTest.js

b890a69febaef49b6df2b5f639b2830b570236352e174f926652058f90201000 ./test/base/SettingsSetSettingTest.js

f150411e2c03a2df3be43c03e3bd4fdaa73129f37a65cf108d756b9dd8511e06 ./test/base/LoansBasePayLoanTest.js

56a63aef3dba9ea1f8f23228f76f211d1e478e2868245a3b11e84d9f24f08bfc
./test/base/LoanTermsConsensusProcessResponseTest.js

7e271424b253b957cd7bdf95916fc77cb923b9d92a022bd97c7bf830d9df0af5 ./test/base/LendingPoolCreateLoanTest.js

c9c22b64395ae242034c94e9331a3c54d251470d0d907a6d656c345eebeb1fdb ./test/base/SettingsPauseLendingPoolTest.js

2919ac7a6645a14dfc70c7596f8f9a0a916fee9517f999082c2dea099ecb0af6
./test/base/LoanTermsConsensusProcessRequestTest.js

943db234a9390d69bcf7bea923047684917500506c1103a4823addf8b2ec97cd
./test/base/LendingPoolLiquidationPaymentTest.js

5f93ce7cd29f0d4481eb602a2463f005cf17c0031ef166df3f32a80b38c1d340 ./test/base/LoansBaseModifiersTest.js

6d017a5a3f3b79af6eec519d5f597afd1591be318a3037966487f49dd1e49170 ./test/base/LendersSetAccruedInterestTest.js

ee22af272035acece5bcfb5674d14bca59a46fd5838b4fec1217fbbe500e7346
./test/base/EtherCollateralLoansWithdrawCollateralTest.js

93aaa8cbf2f6ab559cd46f0aae47c83eacd1b371fb30b6da62532158f18fa362 ./test/base/BaseWhenNotPausedTest.js

94646b99f7a73410e42c068c6d164198795eb41edb71151af81eced898836a56 ./test/base/OwnerSignersRoleTest.js

23b4c153e55597bbd74f90cf1c6a50344a0455fb48bca67b7813a5958bd1ed35
./test/base/TokenCollateralLoansWithdrawCollateralTest.js

a0303c185979be023c498dfac3ae7ab7b1b46b900884010f0b223f7593c1ea18
./test/base/EtherCollateralLoansTakeOutLoanTest.js

c6c128ba03ab5422485ce7ed78fdfba35079f560e96c7796e19308d477c053a9
./test/base/EtherCollateralLoansDepositCollateralTest.js

5b2cd73889055864990f8c5fd6f717d2413578a0d6425ae26b58bc128d66ccd7
./test/base/TokenCollateralLoansDepositCollateralTest.js

c404da20c8bb59d392c2b706180bc039ab36b644522133bfde42b6c0fe39816c ./test/base/BaseWhenPausedTest.js

bf06d742e6c9297ca17cdc40ff22a14245417254defdc7ede60650fb9669a6d6
./test/base/TokenCollateralLoansCreateLoanWithTermsTest.js

30bdb4a0513aa7b2be6cfe16822e05a9b79801495b23deefe450481d01b0b689
./test/base/EtherCollateralLoansGetBorrowerLoansTest.js

434fecb4fef9af687962d6685e917ad841e7522f8bdc3f48112b954a3cf0bfed ./test/base/LendingPoolInitializeTest.js

c97cc81987daa5f6767d8d3718841181313667e3a3093ef5d14d9be1c284b1d6 ./test/base/InitializeModifiersTest.js

a51be2104281c089d0dc8c46674dee1b533df608c78aa29e1b611f9000bd8fe9 ./test/base/SettingsConstructorTest.js

24a6918a673d44824cfafb1240c3c2c09b045441ecc9eeb9a6d19cd9116fdc06 ./test/base/LoansBaseConvertWeiToTokenTest.js

21bda5d358db6e600cd61ba812705c86d64bbcea02502ad75a77383cc670d5ee ./test/base/LendingPoolWithdrawInterestTest.js

26439cb3b7db54fdb1a4f70534eb6da7f11ce74753108e833d0ed5a141b978b5 ./test/base/LendingPoolDepositTest.js

a7f55ab2c5482aae3125f1ceda44069e478e5b8e986ae96e6726dd735dd698c5 ./test/base/BaseInitializeTest.js

bff32b096da1fd9010e97fffa7e5c15074e926629abf0653777a2bc55f065cd3 ./test/base/SettingsUnpauseLendingPoolTest.js

933d9a00ea7c2d15a50211869d5c63d301caecd75e298e4b1590873c723393d3
./test/base/InterestConsensusProcessResponseTest.js

a1111a828a190058da41e4d6f5091ebdbea25c995a59baa3a19ffa3b68aff636
./test/base/EstimateGasLoanTermsConsensusProcessRequestTest.js

3f950bf6c7a2185183dbeb21559449ad9d34e1001726657a82cdf1ffd3df60ee
./test/base/TokenCollateralLoansRequireExpectedBalanceTest.js

b60449d73d1d38ec967063f137a281b8a66dac897ffd10d3acb34f61276d4f50 ./test/base/EtherCollateralLoansRepayTest.js

108cb1018bfcf21d4ab91355c567b1df2aebb739bab0a51ec9f0d86b3602b948
./test/base/EstimateGasInterestConsensusProcessRequestTest.js

27a9551b8c8579c6bc3e1e6127f4c3fb5fb4c2b80f3e8b830bcb60905a405309
./test/base/InterestConsensusSubmitInterestTest.js

281c4ac3b0490736b25d96fa873f38a101e892233f7ef0bd10e48d7fd589b3d2 ./test/base/LendingPoolWithdrawTest.js

169820785763188ed12e94ba104a832b67d92326e343e340af4756674336aa8b ./test/base/InterestConsensusInitializeTest.js

efabc34ff3cc27fb2ec524730bd1d1bb2d7c20a21eb355662858542757407076 ./test/base/LoansBaseLendingTokenTest.js

5a0e48a692929db185732b8b30ff75e6333b16af723b195cbff0582ded3f1f45 ./test/base/LendersInitializeTest.js

3dbde6e1f64eea2e85f569b627f8355742b2d11514ec80bf97614e02e59b2a89 ./test/base/LoansBaseConvertTokenToWeiTest.js

3003c5beeee40cb91462740bdee7c02a197c2aebe60a429629de072203ab2529 ./test/base/BaseConstructorTest.js

ed00e45c86d00b67c8126cd150bb38f632b884f0e9b5f1ea67ee644d079985ea ./test/base/LendersWithdrawInterestTest.js

3977998e148884304bb42c9668e5f4cf88bb1bc90a2a3032fef6093b051315b2 ./test/base/LoanTermsConsensusHashesTest.js

773d4217f095a4cfd7ae1d85f503d70441cc8dbc5fd1380d569d935c4d90a1f2
./test/base/InterestConsensusProcessRequestTest.js

30114fb8b23c6fd1d270e997ed2fc64eab252721e365a19e0cc3e0bc3190b861 ./test/utils/events.js

74f618d06b94ef6b01d31ab15e53e999cd0248975a98ec9025dcbff4adf415cd ./test/utils/consts.js

acdb4592ace14c9e8c9811a5fe7b722c71c535f5dc3dd3dcb85e546748801066 ./test/utils/assertions.js

ff07ffac1f69e538a9144f1dd0d09625ed2944ed46581cac747f94cd9358f4a4 ./test/utils/chains.js

be7a6d340bc54250d311b7232f6cf025a22a9e054207d3426e32b1e89eafd796 ./test/utils/loanStatus.js

5134aa0b684c36f037762ddf752572be2f5fe16e71677352bb5ebc576f798024 ./test/utils/hashes.js

baec1c37c5d2b6453c024c8a5a585db02772735eede043a91a5ecd01d0eb03c8 ./test/utils/printer.js

384a2acc67f2336a2b317b4bd97b4a3953e694856a939a5f7185d6de1a600cbc ./test/utils/structs.js

9fa1089a088ceb6ceb114f0ced244655785fd48b3467883989366a57fbbd5cd0 ./test/utils/collateral-helper.js

3d9df8947ecd5962e2b4f6f048d69c78540d8f3df65514cdbfcd8ef4372caab3 ./test/utils/contracts.js

32110f2c868bf964df1f94071eef9d56f14325e3e96a8c970e5911d757d8f896 ./test/utils/loan-terms-helper.js

8b2399ce16c214be966f3d5d4b5c94d5d8b5137f4ef16d37b8285740748c6fb3
./test/utils/encoders/AggregatorInterfaceEncoder.js

ef97b029cc6b8bd894f5c2f15d028d0d528cc78fe5ee3a3b4569ab2067bce564 ./test/utils/encoders/PairAggregatorEncoder.js

4c9d8890eee4bddfc4a0641f4f9d4d024a51457ccba3eba6b9520b3827b7209b
./test/utils/encoders/LendingPoolInterfaceEncoder.js

965540d78e0457bf4eabbf5470e0e3a3ea3626f08fd2c00b2e84573d24c1db14 ./test/utils/encoders/ERC20InterfaceEncoder.js

a9a945feef479551629b3bfe06f467ae830d061cb7b979f62d62c2b39eebf372
./test/utils/encoders/LendersInterfaceEncoder.js

99dcfbda7cd259505f00f274b311db42c60d560f30c11f0ac26f035f4e09458d
./test/utils/encoders/BurnableInterfaceEncoder.js

6804e2b47fcc294041b5006b37bb3b002f250ddec2c1950d7b8113a44689837f
./test/utils/encoders/MintableInterfaceEncoder.js

dd6182eddd69d5e04b2d1e58a1e64f3489562635c88bdd884eabb5a7f6a0054f
./test/utils/encoders/LoanTermsConsensusEncoder.js

038834cc9b3a7d0af8a99bbb79da374816865d21e99089a17b6582ed0a0a0aad
./test/utils/encoders/CompoundInterfaceEncoder.js

ca9631f90e2bc4177c457d70afc9ac0a2264c64e57eb7b7f915b7d54d67ed1c5 ./test/utils/printers/LoanInfoPrinter.js

febb39714f8b7bf25cdcbe16a7c7cf7a65a9fd5f610e34635712bb2da68a5c02
./test/providers/chainlink/ChainlinkPairAggregatorGetLatestAnswerTest.js

7c202bb2d2857deb05017b02be9a31f842fe5a99e432d78f04154fe3ec56c2f8
./test/providers/chainlink/ChainlinkPairAggregatorGetPreviousAnswerTest.js

b63e8eb6a54c648389dc775fcf20f6deca36e1806e162c8d9b116024da745c30
./test/providers/chainlink/ChainlinkPairAggregatorConstructorTest.js

ec993b814228f4cfc3d59ba37171c6be005577aed4e430bc4b433b3a560d16de
./test/providers/chainlink/InverseChainlinkPairAggregatorGetPreviousAnswerTest.js

fddca3da15f3dc03b7f283c86bfa2a3b2584c1dbd0b514529ba113ae74934d60
./test/providers/chainlink/ChainlinkPairAggregatorGetLatestRoundTest.js

5269c689780dacd38021360359f28c6648d1db5846d8d7b2729dbdc6eb7e4f89
./test/providers/chainlink/ChainlinkPairAggregatorGetLatestTimestampTest.js

179ed3443628607e4f2ea0c3866c1f55758784eaaeff4e1ae2157ae938353a1e
./test/providers/chainlink/ChainlinkPairAggregatorGetPreviousTimestampTest.js

5093ce5b682210c46128465262e110ed6ce5fecfc49dfccbe23c81c7a87cc10d
./test/providers/chainlink/InverseChainlinkPairAggregatorGetLatestAnswerTest.js

f7edc9ddee6fb72e11985423c246fae8f528b83783ba7ebfaa6009b69986af15 ./test/util/NumbersListTest.js

01ca9407e27322812741f25a584aca08a08877f22ceef1eb07cf1b94d27e4571 ./test/util/AddressLibTest.js

Changelog

2020-07-08 - Initial report•

2020-07-27 - Diff audited (commit)• dd7d2ac

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a

mission to help boost the adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal

verification, static analysis, and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects

worldwide to perform cost-effective smart contract security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove

security assessment services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community

initiatives such as the Ethereum Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of

Technology) reflect our commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise

by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the

internet or other means, and assumes no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement

with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such

hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that

Quantstamp are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or

entity for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that

Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the extent to

which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the use of third-

party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated

by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor

inclusive of all vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or

use, including but not limited to any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain

technology remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas

beyond the programming language, or other programming aspects that could present security risks. A report does not indicate the endorsement of any

particular project or team, nor guarantee its security. No third party should rely on the reports in any way, including for the purpose of making any

decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in

connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the implied warranties

of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or

information linked to, called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked

websites, any websites or mobile applications appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring

any transaction between you and any third-party providers of products or services. As with the purchase or use of a product or service through any

medium or in any environment, you should use your best judgment and exercise caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT,

ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED

UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Teller Protocol Audit

